221 resultados para priors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report three developments toward resolving the challenge of the apparent basal polytomy of neoavian birds. First, we describe improved conditional down-weighting techniques to reduce noise relative to signal for deeper divergences and find increased agreement between data sets. Second, we present formulae for calculating the probabilities of finding predefined groupings in the optimal tree. Finally, we report a significant increase in data: nine new mitochondrial (mt) genomes (the dollarbird, New Zealand kingfisher, great potoo, Australian owlet-nightjar, white-tailed trogon, barn owl, a roadrunner [a ground cuckoo], New Zealand long-tailed cuckoo, and the peach-faced lovebird) and together they provide data for each of the six main groups of Neoaves proposed by Cracraft J (2001). We use his six main groups of modern birds as priors for evaluation of results. These include passerines, cuckoos, parrots, and three other groups termed “WoodKing” (woodpeckers/rollers/kingfishers), “SCA” (owls/potoos/owlet-nightjars/hummingbirds/swifts), and “Conglomerati.” In general, the support is highly significant with just two exceptions, the owls move from the “SCA” group to the raptors, particularly accipitrids (buzzards/eagles) and the osprey, and the shorebirds may be an independent group from the rest of the “Conglomerati”. Molecular dating mt genomes support a major diversification of at least 12 neoavian lineages in the Late Cretaceous. Our results form a basis for further testing with both nuclear-coding sequences and rare genomic changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information that is elicited from experts can be treated as `data', so can be analysed using a Bayesian statistical model, to formulate a prior model. Typically methods for encoding a single expert's knowledge have been parametric, constrained by the extent of an expert's knowledge and energy regarding a target parameter. Interestingly these methods have often been deterministic, in that all elicited information is treated at `face value', without error. Here we sought a parametric and statistical approach for encoding assessments from multiple experts. Our recent work proposed and demonstrated the use of a flexible hierarchical model for this purpose. In contrast to previous mathematical approaches like linear or geometric pooling, our new approach accounts for several sources of variation: elicitation error, encoding error and expert diversity. Of interest are the practical, mathematical and philosophical interpretations of this form of hierarchical pooling (which is both statistical and parametric), and how it fits within the subjective Bayesian paradigm. Case studies from a bioassay and project management (on PhDs) are used to illustrate the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Flat-detector, cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. Methods: The rich sources of prior information in IGRT are incorporated into a hidden Markov random field (MRF) model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk (OAR). The voxel labels are estimated using the iterated conditional modes (ICM) algorithm. Results: The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom (CIRS, Inc. model 062). The mean voxel-wise misclassification rate was 6.2%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. Conclusions: By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2\%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issue of using informative priors for estimation of mixtures at multiple time points is examined. Several different informative priors and an independent prior are compared using samples of actual and simulated aerosol particle size distribution (PSD) data. Measurements of aerosol PSDs refer to the concentration of aerosol particles in terms of their size, which is typically multimodal in nature and collected at frequent time intervals. The use of informative priors is found to better identify component parameters at each time point and more clearly establish patterns in the parameters over time. Some caveats to this finding are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the drawbacks for using geo-political areas in mapping outcomes unrelated to geo-politics, a compromise is to aggregate and analyse data at the grid level. This has the advantage of allowing spatial smoothing and modelling at a biologically or physically relevant scale. This article addresses two consequent issues: the choice of the spatial smoothness prior and the scale of the grid. Firstly, we describe several spatial smoothness priors applicable for grid data and discuss the contexts in which these priors can be employed based on different aims. Two such aims are considered, i.e., to identify regions with clustering and to model spatial dependence in the data. Secondly, the choice of the grid size is shown to depend largely on the spatial patterns. We present a guide on the selection of spatial scales and smoothness priors for various point patterns based on the two aims for spatial smoothing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstructing 3D motion data is highly under-constrained due to several common sources of data loss during measurement, such as projection, occlusion, or miscorrespondence. We present a statistical model of 3D motion data, based on the Kronecker structure of the spatiotemporal covariance of natural motion, as a prior on 3D motion. This prior is expressed as a matrix normal distribution, composed of separable and compact row and column covariances. We relate the marginals of the distribution to the shape, trajectory, and shape-trajectory models of prior art. When the marginal shape distribution is not available from training data, we show how placing a hierarchical prior over shapes results in a convex MAP solution in terms of the trace-norm. The matrix normal distribution, fit to a single sequence, outperforms state-of-the-art methods at reconstructing 3D motion data in the presence of significant data loss, while providing covariance estimates of the imputed points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides experimental evidence on how players predict end game effects in a linear public good game. Our regression analysis yields a measure of the relative importance of priors and signals on subjects\' beliefs on contributions and allow us to conclude that, firstly, the weight of the signal is relatively unimportant, while priors have a large weight and, secondly, priors are the same for all periods. Hence, subjects do not expect end game effects and there is very little updating of beliefs.