1000 resultados para prey choice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nesticodes rufipes is widely distributed in tropical and subtropical regions, being strongly associated with humans. However, few behavioral and ecological studies have investigated interspecific interactions between these spiders and insects of medical and veterinary importance. Here, we have investigated prey choice by N. rufipes when two different prey species, Musca domestica and Dermestes ater, were offered simultaneously. We also quantified the capture of these prey types by this predator in a poultry house and analyzed the association between prey-choice with physical characteristics of the prey. Finally, we discuss whether there is an antagonistic intraguild interaction in such a system composed of N. rufipes (top predator), D. ater (predator of larvae of M. domestica and prey of N. rufipes) and M. domestica (N. rufipes' prey). We found that Musca domestica were more abundant than D. ater in N. rufipes webs in the poultry house. Spiders given a choice of adults of M. domestica plus adults of D. ater, and also on adults plus larvae of M. domestica, preyed more on adult flies than on the other prey types. This preference was probably associated with the lesser mass and shorter lengths of adult flies. Our experiments demonstrated that the predation impact of N. rufipes on D. ater is low when compared to M. domestica. This result provides evidence that an antagonistic interaction between these predators does not occur, suggesting that they are in fact acting either synergistically or additively on M. domestica prey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigated predation rates on third instar larvae of Chrysomya putoria and C. megacephala by third instar larvae of C. albiceps in a two-choice situation. The highest predation rate occurred on C. putoria larvae and this result is compared to previous experiments, in which C. macellaria larvae were present. Our results suggest that, when C. macellaria is absent C. albiceps larvae attack more C. putoria than C. megacephala larvae. Prey choice decisions and its implications for introduced and native blowflies are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The minute two-spotted ladybeetle, Diomus notescens Blackburn is a common predator of aphids and other pests in Australian agricultural crops, however little is known about the biology of D. notescens. The aim of this study was to provide information on the life cycle of this predator and improve our understanding of its biological control potential, particularly against one of the major pests of cotton, Aphis gossypii Glover. In laboratory experiments, juvenile development, prey consumption, as well as adult lifespan and fecundity were studied. Results from this study revealed that D. notescens could successfully complete development on A. gossypii, which at 25 °C required 21 days and during this period they each consume 129 ± 5.2 aphids. At 25 °C adult lifespan was 77 ± 9.6 days, with a mean daily prey consumption of 28 ± 1.8 aphids and a mean daily fecundity of 8 ± 0.5 eggs. Net reproductive rate was estimated as 187 ± 25.1 females and the intrinsic rate of increase was estimated as 0.14. Juvenile development was recorded at four constant temperatures (15, 21, 26 and 27 °C) and using a linear model, the lower threshold for D. notescens development was estimated to be 10 ± 0.6 °C with 285 ± 4.7 degree days required to complete development. A prey choice experiment studying predation rates revealed a strong preference for A. gossypii nymphs compared to Bemisia tabaci Gennadius eggs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Western rock lobsters, Panulirus cygnus are an abundant benthic consumer distributed along the temperate west coast of Australia and constitute the largest single species fishery in Australia. As a dominant consumer, it is important to understand their predator-prey interactions as they can potentially exert strong trophic effects, and may influence ecosystem function as seen in other spiny lobster species. While previous field studies have focused on the diet composition of P. cygnus, this study investigated their preference for various benthic invertebrate prey to better understand the likely predator-prey interactions of P. cygnus. Prey preferences of small sub-legal juvenile lobsters, as well as medium and large legal-sized mature lobsters were investigated using laboratory feeding trials to identify size-associated differences in lobster prey preference. Handling time and diet quality were investigated to estimate energetic cost and gain from consuming different prey which may explain prey choice by lobsters. It was found that large lobsters preferred crabs and mussels while medium and small lobsters preferred crabs over mussels, gastropods, and sea urchins. This suggests that strong predator-prey interactions between P. cygnus and crabs may occur in the wild.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An understanding of which native species are severely impacted by an anthropogenic change (such as the arrival of an invasive species) and which are not is critical to prioritizing conservation efforts. However, it is difficult to detect such impacts if the native taxa exhibit strong stochastic variations in abundance; a ‘natural’ population decline might be wrongly interpreted as an impact of the invader. Frillneck lizards (Chlamydosaurus kingii) are large iconic Australian agamids, and have been reported to decline following the invasion of toxic cane toads. We monitored three populations of the species in the savanna woodland of tropical Australia over a 7-year period bracketing toad arrival. One population crashed, one remained stable and one increased. Hence, studies on any single population might have inferred that cane toads have negative, negligible or positive effects on frillneck lizards. With the benefit of spatial replication, and in combination with observations of prey choice by captive lizards, our data suggest that invasive cane toads have had little or no effect on frillneck abundance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A necessidade por recursos alimentares move os insetos predadores na busca por presas, para garantir a sobrevivência. Existem vários fatores que podem influenciar o comportamento de busca e escolha por presas e, sob determinadas circunstâncias, o inseto pode escolher se alimentar de presas não alvo, como, por exemplo, inimigos naturais e assim prejudicar a população de organismos benéficos. Garantir a estabilidade do agroecossistema é uma forma de manter as populações de pragas em níveis compatíveis com a ação de inimigos naturais e, consequentemente obter o sucesso no controle biológico. Programas bem sucedidos de manejo de pragas requerem previamente a realização de estudos sobre comportamento de insetos. Com o intuito de compreender os fatores que governam o comportamento predatório e as interações ecológicas entre Harmonia axyridis e Chrysoperla externa, considerando a presença de Diaphorina citri como presa, objetivou-se estudar o efeito de interações intraguilda sobre a predação de D. citri, experimentalmente e utilizando modelos estatísticos para compreender a dinâmica de interações tróficas no contexto de potenciais guildas presentes em citros. Três experimentos distintos foram realizados para investigar o comportamento dos insetos predadores. Foram realizados testes com escolha entre larvas dos predadores C. externa e H. axyridis e testes com e sem escolha comparando machos e fêmeas do predador H. axyridis, a fim de investigar padrões de escolha de presas. O segundo experimento foi realizado para investigar o comportamento predatório entre larvas de segundo instar dos predadores sob diferentes densidades de D. citri como presa. As combinações foram: sem escolha de presas intraguilda, combinações com escolha de presas intraguilda e combinações com a presença de dois predadores da mesma espécie para possibilitar o canibalismo. As densidades de D. citri utilizadas foram 5, 10, 15, 30, 60, 80. No último experimento avaliou-se a interação entre larvas de C. externa e H. axyridis, ao longo do desenvolvimento, simulando a existência de apenas uma presa, como fonte de alimento. O desenvolvimento dos predadores foi avaliado e comparado utilizando-se duas presas diferentes, ninfas de D. citri e ovos de Ephestia kuehniella para cada larva de primeiro instar dos predadores C. externa e H. axyridis. As combinações de predadores foram as mesmas citadas no experimento anterior. Observou-se a duração do desenvolvimento larval nas diferentes combinações de predadores e presa, bem como o percentual de predações intraguilda e canibalismos ocorridos. Nem a densidade de presas, nem o tipo de presa ofertada influenciou o comportamento das larvas dos predadores para a realização de predação intraguilda ou canibalismo. O principal fator foi a diferença de idade que reflete no tamanho dos predadores, podendo direcionar a predação intraguilda ou o canibalismo e até mesmo acelerar o ciclo de desenvolvimento do predador intraguilda envolvido. Predadores em estágio inicial de vida buscaram por qualquer tipo de presa para garantir sua sobrevivência, não demonstrando qualquer padrão em suas escolhas. No caso dos adultos de H. axyridis, há diferença de comportamento entre os sexos, dependendo da densidade de presas disponíveis, fêmeas poderão ser mais ágeis na busca e consumo de presas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Behaviours related to foraging and feeding in predator-prey systems are fundamental to our understanding of food webs. From the perspective of a predator, the selection of prey size depends upon a number of factors including prey vulnerability, prey size, and the predator's motivation to eat. Thus, feeding motivation and prey visual cues are supposed to influence predator decisions and it is predicted that prey selection by visual cues is modulated by the predator's stomach fullness prior to attacking a prey. This study was conducted using an animal model from the rocky shores ecosystem, a predatory fish, the frillfin goby Bathygobius soporator, and a benthic prey, the mottled shore crab Pachygrapsus transversus. Our results demonstrate that frillfin gables are capable of visually evaluating prey size and that the size evaluation process is modulated by the level of stomach fullness. Predators with an empty stomach (0% fullness) attacked prey that was larger than the predicted optimal size. Partially satiated predators (50% stomach fullness) selected prey close to the optimal size, while fully satiated predators (100% stomach fullness) showed no preference for size. This finding indicates an integrative response of the predator that depends on the input of both internal and external sensory information when choosing prey. Predator perceptions of visual cues (prey size) and stomach fullness modulate foraging decisions. As a result, a flexible feeding behaviour emerges, evidencing a clearly adaptive response in line with optimal foraging theory predictions. (C) 2012 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. A more general contingency model of optimal diet choice is developed, allowing for simultaneous searching and handling, which extends the theory to include grazing and browsing by large herbivores.</p><p>2. Foraging resolves into three modes: purely encounter-limited, purely handling-limited and mixed-process, in which either a handling-limited prey type is added to an encounter-limited diet, or the diet becomes handling-limited as it expands.</p><p>3. The purely encounter-limited diet is, in general, broader than that predicted by the conventional contingency model,</p><p>4. As the degree of simultaneity of searching and handling increases, the optimal diet expands to the point where it is handling-limited, at which point all inferior prey types are rejected,</p><p>5. Inclusion of a less profitable prey species is not necessarily independent of its encounter rate and the zero-one rule does not necessarily hold: some of the less profitable prey may be included in the optimal diet. This gives an optimal foraging explanation for herbivores' mixed diets.</p><p>6. Rules are shown for calculating the boundary between encounter-limited and handling-limited diets and for predicting the proportion of inferior prey to be included in a two-species diet,</p><p>7. The digestive rate model is modified to include simultaneous searching and handling, showing that the more they overlap, the more the predicted diet-breadth is likely to be reduced.</p>

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a theory for the food intake of a predator that can switch between multiple prey species. The theory addresses empirical observations of prey switching and is based on the behavioural assumption that a predator tends to continue feeding on prey that are similar to the prey it has consumed last, in terms of, e.g., their morphology, defences, location, habitat choice, or behaviour. From a predator's dietary history and the assumed similarity relationship among prey species, we derive a general closed-form multi-species functional response for describing predators switching between multiple prey species. Our theory includes the Holling type II functional response as a special case and makes consistent predictions when populations of equivalent prey are aggregated or split. An analysis of the derived functional response enables us to highlight the following five main findings. (1) Prey switching leads to an approximate power-law relationship between ratios of prey abundance and prey intake, consistent with experimental data. (2) In agreement with empirical observations, the theory predicts an upper limit of 2 for the exponent of such power laws. (3) Our theory predicts deviations from power-law switching at very low and very high prey-abundance ratios. (4) The theory can predict the diet composition of a predator feeding on multiple prey species from diet observations for predators feeding only on pairs of prey species. (5) Predators foraging on more prey species will show less pronounced prey switching than predators foraging on fewer prey species, thus providing a natural explanation for the known difficulties of observing prey switching in the field. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 The feeding responses of Pterostichus madidus Fab., P. melanarius Illiger and Nebria brevicollis Fab. (Coleoptera: Carabidae) to dimethoate-contaminated prey were investigated in 'no-choice' and 'choice' feeding tests. 2 In the no-choice tests, starved beetles were presented with aphid prey treated with four concentrations of dimethoate. In the choice tests, treated and untreated prey were presented together and the feeding preferences of the starved beetles observed. 3 No avoidance or rejection behaviour was seen in any of the carabids in either of the tests, i.e. no discrimination of the treated and untreated prey was observed. 4 Sufficient dimethoate was consumed with the aphid prey to cause significant mortality levels in the carabids. 5 The concentrations of dimethoate used in these experiments are comparable to field exposure, so carabids feeding in treated fields and field margins could potentially suffer lethal effects via the indirect exposure route of consuming contaminated prey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we assessed the influence of prey quality and prey biomass during a standardized 3-week test on adult survival and reproductive output of the predatory mite Hypoaspis aculeifer when fed one of six different diets: springtails (Folsomia candida and Folsomia fimetaria), a storage mite (Caloglyphus cf. michaeli), an oligochaete (Enchytraeus crypticus), a nematode (Turbatrix silusiae), and a 1:1:1 mix of F. candida:F.fimetaria:E. crypticus. Our results revealed that a single prey species may be nutritionally sufficient for a 3-week period, as H. aculeifer performed equally well, or better, on a diet based on a 1:1:1 mix of F. candida:F. fimetaria:E. crypticus. However, when fed C. cf. michaeli, H. aculeifer had a poor reproductive output (< 200 juveniles) and a reduced survival (60-70%). Thus, investigators should validate their choice of prey prior to testing H. aculeifer performance during toxicant exposure. (c) 2007 Elsevier B.V. All rights reserved.