24 resultados para prepreg


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cure kinetic model is an integral part of composite process simulation, which is used to predict the degree of curing and the amount of the generated heat. The parameters involved in kinetic models are usually determined empirically from isothermal or dynamic differential scanning calorimetry (DSC) data. In this work, DSC and rheological techniques were used to investigate some of the kinetic parameters of cure reactions of carbon/F161 epoxy prepreg and to evaluate the cure cycle used to manufacture polymeric composites for aeronautical applications. As a result, it was observed that the F161 prepreg presents cure kinetic with total order 1.2-1.9. (c) 2006 Springer Science + Business Media, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon/epoxy 8552 prepreg is a thermoplastic toughened high-performance epoxy being used in the manufacture of advanced army material. Understanding the cure behavior of a thermosetting system is essential in the development and optimization of composite fabrication processes. The cure kinetics and rheological behavior were evaluated using a differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and a rheometer. Values of the kinetic parameters were obtained from dynamic DSC scans using an nth order reaction model. Rheological measurements as a function of temperature and time were made for the prepreg system. The manufacturer's recommended cure cycle was evaluated and considered adequate to consolidated the studied system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The curing reaction process of epoxy-terminated poly(phenylene ether ketone) (E-PEK) with 4,4'-diaminodiphenyl sulfone (DDS) and hexahydrophthalic acid anhydride (Nadic) as curing agents was investigated using isothermal differential scanning calorimetry (IDSC) and nonisothermal differential scanning calorimetry (DDSC) techniques. It was found that the curing reactions of E-PEK/DDS and E-PEK/Nadic are nth-order reactions but not autoaccelerating. The experimental results revealed that the curing reaction kinetics parameters measured from IDSC and DDSC are not equivalent. This means that, in the curing reaction kinetics model for our E-PEK system, both isothermal and nonisothermal reaction kinetics parameters are needed to describe isothermal and nonisothermal curing processes, The isothermal and nonisothermal curing processes were successfully simulated using this model. A new extrapolation method was suggested. On the basis of this method the maximum extent of the curing reaction (A(ult)) that is able to reach a certain temperature can be predicted. The A(ult) for the E-PEK system estimated by the new method agrees well with the results obtained from another procedure reported in the literature. (C) 1997 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel amorphous thermoplastic polyimide (PTI) is being developed as a potential matrix resin for advanced composites. This paper describes the manufacture of the resin, prepreg, and processing of the composite. The chemical and physical behavior of the resin during the processing was determined by infrared spectroscopy and rheology. The influence of processing conditions on the composite properties was investigated. Mechanical properties of the unidirectional carbon fiber/PTI laminates were also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel approach for introducing aligned carbon nanotubes (CNTs) at the crack interface of pre-impregnated (prepreg) carbon fibre composite plies, creating a hierarchical (three-phase) composite structure. The aim of this approach is to improve the interlaminar fracture toughness. The developed method for transplanting the aligned CNTs from the silicon wafer onto the pre-preg material is described. Scanning electron microscopy (SEM) was used to analyse the effects of the transplantation method. Double Cantilever Beam (DCB) specimens were prepared, according to ASTM standard D5528- 01R07E03 [1] and aligned multi-walled carbon nanotubes (MWCNTs) were introduced at the crack-tip. Mode I fracture tests for pristine (control) specimens and CNT-enhanced specimens were conducted and an average increase in the critical strain energy release rate (GIc) of approximately 50 % was achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel approach for introducing aligned multi-walled carbon nanotubes (MWCNTs) in a carbon-fibre composite pre-impregnated (prepreg) laminate, to improve the through-thickness fracture toughness, is presented. Carbon nanotube (CNT) 'forests' were grown on a silicon substrate with a thermal oxide layer, using a chemical vapour deposition (CVD) process. The forests were then transferred to a pre-cured laminate interface, using a combination of pressure and heat, while maintaining through-thickness CNT alignment. Standard Mode I and four-point bend end-notched flexure Mode II tests were undertaken on a set of specimens and compared with pristine specimens. Mode I fracture toughness for T700/M21 laminates was improved by an average of 31% while for T700/SE84LV specimens, an improvement of 61% was observed. Only T700/M21 specimens were tested in Mode II which yielded an average fracture toughness improvement of 161%. Scanning Electron Microscopy (SEM) showed good wetting of the CNT forest as well as evidence of penetration of the forest into the adjacent plies. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines a large structural component and its supply chain. The component is representative of that used in the production of civil transport aircraft and is manufactured from carbon fibre epoxy resin prepreg, using traditional hand layup and autoclave cure. Life cycle assessment (LCA) is used to predict the component’s production carbon emissions. The results determine the distribution of carbon emissions within the supply chain, identifying the dominant production processes as carbon fibre manufacture and composite part manufacture. The elevated temperature processes of material and part creation, and the associated electricity usage, have a significant impact on the overall production emissions footprint. The paper also demonstrates the calculation of emissions footprint sensitivity to the geographic location and associated energy sources of the supply chain. The results verify that the proposed methodology is capable of quantitatively linking component and supply chain specifics to manufacturing processes and thus identifying the design drivers for carbon emissions in the manufacturing life of the component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite laminates with plies in different directions finely dispersed are classified as homogenized. The expected benefits of homogenization include increased mechanical strength, toughness and resistance to delamination. The objective of this study was to evaluate the effect of stacking sequence on the tensile strength of laminates. Composite plates were fabricated using unidirectional layers of carbon/epoxy prepreg with configurations [903/303/-303]S and [90/30/-30]3S. Specimens were subjected to tensile and open hole tension (OHT) tests. According to the experimental results, the mean values of strength for the homogenized laminates [90/30/-30]3S were 140% and 120% greater for tensile and OHT tests, respectively, as compared to laminates with configuration [903/303/-303]S. The increase in tensile strength for more homogenized laminates was associated with the increment in interlaminar interfaces, which requires more energy to produce delamination, and the more complicated crack propagation through plies with different orientations. OHT strength was not affected by the presence of the hole due to the predominance of the interlaminar shear stress in relation to the stress concentration produced by the hole

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of thermal-shock cycles on the mechanical properties of fiber-metal laminates (FMLs) has been evaluated. FML plates were composed by two AA2024 Al sheets (1.6 mm thick) and one composite ply formed by two layers of unidirectional glass fiber epoxy prepreg and two layers of epoxy adhesive tape of glass fiber reinforced epoxy adhesive. The set was manufactured by hand layup and typical vacuum bag technique. The curing cycle was in autoclave at 125 +/- 5 degrees C for 90 min and an autoclave pressure of 400 kPa. FML coupons taken from the manufactured plate were submitted to temperature variations between -50 and +80 degrees C, with a fast transition between these temperatures. Tensile and interlaminar shear strength were evaluated on samples after 1000 and 2000 cycles, and compared to nonexposed samples. 2000 Cycles corresponds to typical C Check interval for commercial aircraft maintenance programs. It was observed that the thermal-shock cycles did not result in significant microstructural changes on the FML, particularly on the composite ply. Similarly, no appreciable effect on the mechanical properties of FML was observed by the thermal-shock cycles. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two different carbon/epoxy prepreg materials were characterized and compared using thermal (DSC, TGA, and DMA) and rheological analyses. A prepreg system (carbon fiber preimpregnated with epoxy resin F584) that is currently used in the commercial airplane industry was compared with a prepreg system that is a prospective candidate for the same applications (carbon fiber prepreg/epoxy resin 8552). The differences in the curing kinetics mechanisms of both prepreg systems were identified through the DSC, TGA, DMA, and rheological analyses. Based on these thermal analysis techniques, it was verified that the curing of both epoxy resin systems follow a cure kinetic of n order. Even though their reaction heats were found to be slightly different, the kinetics of these systems were nevertheless very similar. The activation energies for both prepreg systems were determined by DSC analysis, using Arrhenius's method, and were found to be quite similar. DMA measurements of the cured prepregs demonstrated that they exhibited similar degrees of cure and different glass transition temperatures. Furthermore, the use of the rheological analysis revealed small differences in the gel temperatures of the two prepreg systems that were examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fiber metal laminates are the frontline materials for aeronautical and space structures. These composites consists of layers of 2024-T3-aluminum alloy and composite prepreg layers. When the composite layer is a carbon fiber prepreg, the fiber metal laminate, named Carall, offers significant improvements over current available materials for aircraft structures. While weight reduction and improved damage tolerance characteristics were the prime drivers to develop this new family of materials, it turns out that they have additional benefits, which become more and more important for today's designers, such as cost reduction and improved safety. The degradation of composites is due to environmental effects mainly on the chemical and/or physical properties of the polymer matrix leading to loss of adhesion of fiber/resin interface. Also, the reduction of fiber strength and stiffness are expected due to environmental degradation. Changes in interface/interphase properties leads to more pronounced changes in shear properties than any other mechanical properties. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites and Carall have been investigated by using interlaminar shear (ILSS) and Iosipescu tests. It was observed that hygrothermal conditioning reduces the Iosipescu shear strength of CF/E and Carall composites due to the moisture absorption in these materials. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)