2 resultados para prekallikrein


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activation of pre-kininogenin to kininogenin (pre-kallikrein to kallikrein) is one of the steps in the series of reactions of a complex system, linked also to fibrinolysis and coagulation, that leads to kinin release in plasma (See Cochrane et al., 1976; Wuepper, 1976; Kaplan et al., 1976; Kaplan et al., 1976). For human plasma, a test using kaolin as activator and measuring kallikrein activity with the chromogenic substrate Chromozym PK (Nα-benzoyl-prolyl-phenylalanyl-arginyl-nitroanilide, Pentapharm, Basle) is routinely employed. The purpose of this paper is to further study the mechanism of this activation, by means of different activators and using as inhibitor hexadimethrine bromide (Polybrene). Besides kaolin, sulfated polysaccharides, such as heparin and cellulose sulfate are able to activate pre-kininogenin to kininogenin. Hexadimethrine as expected, inhibited the activation by heparin and also that by cellulose sulfate. The activation by kaolin however followed a different pattern suggesting, at least partially, a different mode of action of this activator. © 1979.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhanced production of proinflammatory bradykinin-related peptides, the kinins, has been suggested to contribute to the pathogenesis of periodontitis, a common inflammatory disease of human gingival tissues. In this report, we describe a plausible mechanism of activation of the kinin-generating system, also known as the contact system or kininogen-kallikrein-kinin system, by the adsorption of its plasma-derived components such as high-molecular-mass kininogen (HK), prekallikrein (PK), and Hageman factor (FXII) to the cell surface of periodontal pathogen Porphyromonas gingivalis. The adsorption characteristics of mutant strains deficient in selected proteins of the cell envelope suggested that the surface-associated cysteine proteinases, gingipains, bearing hemagglutinin/adhesin domains (RgpA and Kgp) serve as the major platforms for HK and FXII adhesion. These interactions were confirmed by direct binding tests using microplate-immobilized gingipains and biotinylated contact factors. Other bacterial cell surface components such as fimbriae and lipopolysaccharide were also found to contribute to the binding of contact factors, particularly PK. Analysis of kinin release in plasma upon contact with P. gingivalis showed that the bacterial surface-dependent mechanism is complementary to the previously described kinin generation system dependent on HK and PK proteolytic activation by the gingipains. We also found that several P. gingivalis clinical isolates differed in the relative significance of these two mechanisms of kinin production. Taken together, these data show the importance of this specific type of bacterial surface-host homeostatic system interaction in periodontal infections.