931 resultados para predictive medicine
Resumo:
The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA—disseminated and implemented in over 70 countries globally—is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA (Contre les Maladies Chroniques pour un Vieillissement Actif)-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease.
Resumo:
In recent years, the phrase 'genomic medicine' has increasingly been used to describe a new development in medicine that holds great promise for human health. This new approach to health care uses the knowledge of an individual's genetic make-up to identify those that are at a higher risk of developing certain diseases and to intervene at an earlier stage to prevent these diseases. Identifying genes that are involved in disease aetiology will provide researchers with tools to develop better treatments and cures. A major role within this field is attributed to 'predictive genomic medicine', which proposes screening healthy individuals to identify those who carry alleles that increase their susceptibility to common diseases, such as cancers and heart disease. Physicians could then intervene even before the disease manifests and advise individuals with a higher genetic risk to change their behaviour - for instance, to exercise or to eat a healthier diet - or offer drugs or other medical treatment to reduce their chances of developing these diseases. These promises have fallen on fertile ground among politicians, health-care providers and the general public, particularly in light of the increasing costs of health care in developed societies. Various countries have established databases on the DNA and health information of whole populations as a first step towards genomic medicine. Biomedical research has also identified a large number of genes that could be used to predict someone's risk of developing a certain disorder. But it would be premature to assume that genomic medicine will soon become reality, as many problems remain to be solved. Our knowledge about most disease genes and their roles is far from sufficient to make reliable predictions about a patient’s risk of actually developing a disease. In addition, genomic medicine will create new political, social, ethical and economic challenges that will have to be addressed in the near future.
Resumo:
La médecine prédictive évalue la probabilité que des personnes portant des mutations génétiques constitutionnelles puissent développer une maladie donnée, comme par exemple une tumeur maligne (oncogénétique). Dans le cas des prédispositions génétiques au cancer, des mesures particulières de surveillance et de prévention sont discutées en fonction de l'évaluation des risques et des résultats de l'analyse génétique, y compris certains traitements préventifs allant, à l'extrême, jusqu'à l'intervention chirurgicale prophylactique (ex : mastectomie et/ou ovariectomie). Cette étude est basée sur une interprétation psychanalytique du récit de sujets ayant entrepris une démarche en oncogénétique et vise à analyser l'impact psychique : a) du résultat de l'analyse génétique et b) de la construction de l'arbre généalogique. Elle a été conduite dans l'Unité d'oncogénétique et de prévention des cancers (UOPC) du Service d'oncologie des Hôpitaux Universitaires de Genève (HUG). L'UOPC assure des consultations de conseil génétique spécialisé pour les personnes ayant des antécédents personnels et/ou familiaux de maladies tumorales suggestifs de l'existence de prédispositions génétiques au cancer. La population de cette étude comprend 125 sujets suivis lors des différentes étapes du dépistage, pour un total de 289 consultations et 50 entretiens individuels. Cette recherche montre que les sujets asymptomatiques réélaborent de façon personnelle, soit le résultat génétique (négatif ou positif), soit l'acte de prédiction. En revanche, ceux qui ont développé un cancer expriment des sentiments d'angoisse, comme s'ils subissaient les effets d'un destin inéluctable qui s'est effectivement réalisé. Par ailleurs, l'arbre généalogique est réinterprété de façon personnelle, laissant apparaître des aspects refoulés ou niés qui peuvent resurgir. Lorsque d'autres membres de la famille sont sollicités pour préciser les liens génétiques et/ou être soumis en première intention à l'analyse génétique, le sujet exprime sa difficulté de dépendre d'autres personnes pour connaître son propre statut biologique. D'une façon générale, on constate que là où la médecine prédictive réalise son acte de prévision, le sujet répond de façon imprévisible. Dans l'optique de la psychanalyse, cette imprévisibilité est liée aux aspects du « désir inconscient ». Cette étude montre aussi qu'on ne peut pas considérer le dépistage génétique comme étant la cause directe du traumatisme. L'effort doit porter sur le fait que le sujet puisse se réapproprier ce qui lui arrive, et exprimer progressivement sa souffrance spécifique en jeu dans le processus de prédiction pour créer un écart entre la vérité médicale et la sienne. L'espace de la parole devient ainsi le lieu d'un travail privilégié. La psychanalyse opère donc pour que le résultat génétique se détache de l'acte de prédiction, c'est-à-dire qu'il redevienne un moment de la vie du sujet qui puisse s'articuler comme sa propre histoire personnelle. The aim of predictive medicine is to assess the probability that individuals carrying germ-line mutations will develop certain diseases, for instance cancer (oncogenetics). In predictive oncology, particular surveillance and prevention measures are discussed with these patients in relation to risk assessment and results of genetic testing, including preventive care which can, in extremes cases, lead to prophylactic surgery (i.e. mastectomy and/or ovariectomy). This study is based on a psychoanalytic interpretation of subjects' narration of the oncogenetic process and aims at analyzing the psychological impact of a) genetic testing and b) the construction of the family tree. It was carried out at the Oncogenetics and cancer prevention unit (Unité d'oncogénétique et de prévention des cancers) from the Geneva University Hospitals (Hôpitaux Universitaires de Genève, HUG) which organizes genetic counselling for individuals having personal and/or family history suggestive of genetic predisposition to cancer. The study population comprises 125 patients followed during the successive steps of genetic counselling, for a total of 289 consultations and 50 personal interviews. This research shows that asymptomatic subjects re-elaborate in a personal way either the results of genetic testing (negative or positive) or the act of prediction. Conversely, those having developed cancer express feelings of anguish, as if they were undergoing the effects of a destiny which effectively happened. Its sight remains a difficult step of the oncogenetic process, as psychological aspects which were repressed or denied can re-appear. When some family members are solicited to help reconstructing the genetic relationships, sometimes being themselves submitted first to genetic testing, the study subject expresses the difficulty to depend on other persons to learn more about his own biological status. In this study, we observe that, in parallel to predictions delivered by the process of predictive medicine, the subject actually answers unpredictably. With a psychoanalytic perspective, this unpredictability is related to an "unconscious desire". We also find that we cannot consider that genetic screening is a direct cause of psychological trauma. Our efforts must rely on allowing the subject to re-appropriate himself what is happening, to let him progressively express his own suffering of the prediction in order to create a gap between the medical reality and his own. In this process, "speech" is needed to let this happening. Psychoanalysis works in such a way that the genetic testing's result becomes distinct from the act of prediction, a moment of the subject's life expressed as his own personal history.
Resumo:
Key Messages: A fundamental failure of high-risk prevention strategies is their inability to prevent disease in the large part of the population at a relatively small average risk and from which most cases of diseases originate. The development of individual predictive medicine and the widening of high-risk categories for numerous (chronic) conditions lead to the application of pseudo-high-risk prevention strategies. Widening the criteria justifying individual preventive interventions and the related pseudo-high-risk strategies lead to treating, individually, ever healthier and larger strata of the population. The pseudo-high-risk prevention strategies raise similar problems compared with high-risk strategies, however on a larger scale and without any of the benefit of population-based strategies. Some 30 years ago, the strengths and weaknesses of population-based and high-risk prevention strategies were brilliantly delineated by Geoffrey Rose in several seminal publications (Table 1).1,2 His work had major implications not only for epidemiology and public health but also for clinical medicine. In particular, Rose demonstrated the fundamental failure of high-risk prevention strategies, that is, by missing a large number of preventable cases.
Resumo:
Considérée comme le futur de la pratique médicale, la nanomédecine est l’application des nanotechnologies aux soins de santé. Plus qu’un nouveau domaine d’application technologique, la nanomédecine est porteuse d’un nouveau paradigme biomédical qui promeut une conception technoscientifique de la santé. Ce nouveau paradigme regroupe sous le préfixe nano l’ensemble des grandes tendances actuelles de la recherche en santé : la médecine prédictive, la médecine personnalisée et la médecine régénératrice. Centré sur le développement d’innovations visant au contrôle technique des éléments et des processus biologiques fondamentaux, ce nouveau paradigme se développe largement grâce au soutien des gouvernements et aux promesses économiques qu’il soulève. Il se construit à la croisée du scientifique, du politique et de l’économique. Interroger la nanomédecine revient alors à examiner plus largement la forme et les conditions du sens des innovations biomédicales et à soulever les implications de la « technoscientifisation » des soins de santé. L’objectif de cette thèse est de rendre compte de la spécificité et des enjeux sociaux, culturels et politico-économiques caractéristiques du modèle biomédical technoscientifique porté par la nanomédecine à partir de sa conceptualisation sous la forme d’un idéaltype : la nanosanté. Si la nanomédecine renvoie de manière générale aux applications techniques de la nanotechnologie au domaine biomédical, la nanosanté renvoie aux diverses dimensions sociologiques constitutives de ces technologies et à leurs effets sur la santé et la société. Notre modèle de la nanosanté s’organise autour de trois dimensions : la transversalité, l’amélioration et la globalisation. Compte tenu de sa nature synthétique, ce modèle tridimensionnel permet iii d’aborder de front plusieurs questionnements cruciaux soulevés par le développement de la nanomédecine. Il permet d’éclairer le rapport contemporain à la santé et ses implications sur l’identité ; de mettre en lumière la centralité des technosciences dans la conception du progrès médical et social ; de mieux saisir les nouvelles formes globales de pouvoir sur la vie et les nouvelles formes d’inégalité et d’exploitation caractéristiques d’une société qui accorde une valeur grandissante à l’adaptabilité technique de l’humain et à l’économisation de la santé et du corps ; mais aussi de mieux comprendre le sens et les répercussions de l’engagement scientifique, politique et économique dans les innovations moléculaires et cellulaires.
Resumo:
Clinical pathologies draw us to envisage disease as either an independent entity or a diverse set of traits governed by common physiopathological mechanisms, prompted by environmental assaults throughout life. Autoimmune diseases are not an exception, given they represent a diverse collection of diseases in terms of their demographic profile and primary clinical manifestations. Although they are pleiotropic outcomes of non-specific disease genes underlying similar immunogenetic mechanisms, research generally focuses on a single disease. Drastic technologic advances are leading research to organize clinical genomic multidisciplinary approaches to decipher the nature of human biological systems. Once the currently costly omic-based technologies become universally accessible, the way will be paved for a cleaner picture to risk quantification, prevention, prognosis and diagnosis, allowing us to clearly define better phenotypes always ensuring the integrity of the individuals studied. However, making accurate predictions for most autoimmune diseases is an ambitious challenge, since the understanding of these pathologies is far from complete. Herein, some pitfalls and challenges of the genetics of autoimmune diseases are reviewed, and an approximation to the future of research in this field is presented.
Resumo:
Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing.
Resumo:
Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing.
Resumo:
There is controversy about whether traditional medicine can guide drug discovery, and investment in ethnobotanically led research has fluctuated. One view is that traditionally used plants are not necessarily efficacious and there are no robust methods for distinguishing the ones that are most likely to be bioactive when selecting species for further testing. Here, we reconstruct a genus-level molecular phylogeny representing the 20,000 species found in the floras of three disparate biodiversity hotspots: Nepal, New Zealand and the Cape of South Africa. Borrowing phylogenetic methods from community ecology, we reveal significant clustering of the 1,500 traditionally used species, and provide a direct measure of the relatedness of the three medicinal floras. We demonstrate shared phylogenetic patterns across the floras: related plants from these regions are used to treat medical conditions in the same therapeutic areas. This strongly suggests independent discovery of plant efficacy, an interpretation corroborated by the presence of a significantly greater proportion of known bioactive species in these plant groups than in a random sample. Phylogenetic cross-cultural comparison can focus screening efforts on a subset of traditionally used plants that are richer in bioactive compounds, and could revitalise the use of traditional knowledge in bioprospecting.
Resumo:
The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution.
Resumo:
Objective: To evaluate the validity and applicability of the Mini International Neuropsychiatric Interview (MINI) used by family medicine residents in primary health care (PHC) in Brazil. Methods: Training for administrating the MINI was given as part of a broad psychiatry education program. Interviews were held with 120 PHC patients who were at least 15 years old. MINI was administered by 25 resident physicians, while the Structured Clinical Interview for Diagnosis (SCID) was administered by a psychiatrist blind to patients` results on the MINI, and the diagnoses on both interviews were compared. The resident physicians answered questions on the applicability of the MINI. Results: Concordance levels for any mental disorder, the broader current diagnostic categories and the most common specific diagnoses were analyzed. Kappa coefficients ranged between 0.65 and 0.85; sensitivity, between 0.75 and 0.92; specificity, between 0.90 and 0.99; positive predictive values (PPV), between 0.60 and 0.86; negative predictive values (NPV), between 0.92 and 0.99; and accuracy, between 0.88 and 0.98. The resident physicians considered MINI comprehensibility and clinical relevance satisfactory. Conclusions: These good psychometric results in a real-world setting may be related to a special training program, which is more frequent, intensive and diversified. In these conditions, the MINI is a useful tool for general practitioners. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this study we present a novel automated strategy for predicting infarct evolution, based on MR diffusion and perfusion images acquired in the acute stage of stroke. The validity of this methodology was tested on novel patient data including data acquired from an independent stroke clinic. Regions-of-interest (ROIs) defining the initial diffusion lesion and tissue with abnormal hemodynamic function as defined by the mean transit time (MTT) abnormality were automatically extracted from DWI/PI maps. Quantitative measures of cerebral blood flow (CBF) and volume (CBV) along with ratio measures defined relative to the contralateral hemisphere (r(a)CBF and r(a)CBV) were calculated for the MTT ROIs. A parametric normal classifier algorithm incorporating these measures was used to predict infarct growth. The mean r(a)CBF and r(a)CBV values for eventually infarcted MTT tissue were 0.70 +/-0.19 and 1.20 +/-0.36. For recovered tissue the mean values were 0.99 +/-0.25 and 1.87 +/-0.71, respectively. There was a significant difference between these two regions for both measures (P
Resumo:
Invasive aspergillosis (IA) is a life-threatening fungal disease commonly diagnosed among individuals with immunological deficits, namely hematological patients undergoing chemotherapy or allogeneic hematopoietic stem cell transplantation. Vaccines are not available, and despite the improved diagnosis and antifungal therapy, the treatment of IA is associated with a poor outcome. Importantly, the risk of infection and its clinical outcome vary significantly even among patients with similar predisposing clinical factors and microbiological exposure. Recent insights into antifungal immunity have further highlighted the complexity of host-fungus interactions and the multiple pathogen-sensing systems activated to control infection. How to decode this information into clinical practice remains however, a challenging issue in medical mycology. Here, we address recent advances in our understanding of the host-fungus interaction and discuss the application of this knowledge in potential strategies with the aim of moving toward personalized diagnostics and treatment (theranostics) in immunocompromised patients. Ultimately, the integration of individual traits into a clinically applicable process to predict the risk and progression of disease, and the efficacy of antifungal prophylaxis and therapy, holds the promise of a pioneering innovation benefiting patients at risk of IA.