997 resultados para predator–prey interactions


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An attempt to improve the food base for brown trout Salmo trutta in Northern Ireland was made in 1958.59 by deliberately introducing English Gammarus pulex into several Irish rivers. In addition. another amphipod Crangonyx pseudogracilis, was later accidently introduced into II ish waters. Our study represents the first attempt to examine the trophic interactions between a native fish predator (S. trutta) and an array of these native (Gammarus duebeni celticus) and introduced (G. pulex and C. pseudogracilis) amphipods. Feeding experiments, involving young brown trout predators and ampiphod prey, revealed that the fish actively selected C. pseudogracilis relative to two alternative Gammarus prey species. Although the trout encountered the Gammarus species more than C. pseudogracilis, they were eaten less than Crangonyx. Difficulties in handling and ingestion of Gammarus by trout may be a. key component of the preference fbr the smaller, more easily handled Crangonyx. The microdistribution of the species was altered by the fish, due to predation being greater in particular microhabitats, Our study showed that the introduction of the herbivorous C. pseudogracilis into Irish freshwaters may represent a useful addition to fish diets. particularly for small and/or juvenile fish. The reprecussions of the deliberate introduction of G. pulex are less clear. It may improve feeding for fish. but only if it can coexist with indigenous macroinvertebrates and thus ultimately improve the range and quantity of possible food items in predator diets. Alternatively, being highly predatory towards other macroinvertebrates including G. d. celticus and C. pseudogracilis. G. pulex may be deleterious to the diversity of the resident benthic community and hence reduce the diversity of prey available to fish predators.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ecological effects of invasive species depend on myriad environmental contexts, rendering understanding problematic. Functional responses provide a means to quantify resource use by consumers over short timescales and could therefore provide insight into how the effects of invasive species vary over space and time. Here, we use novel in situ microcosm experiments to track changes in the functional responses of two aquatic mesopredators, one native and the other an invader, as they undergo diel vertical migrations through a lake water column.
The Ponto–Caspian mysid, Hemimysis anomala, a known ecologically damaging invader, generally had higher a functional response towards cladoceran prey than did a native trophic analogue, Mysis salemaai. However, this differential was spatiotemporally dependent, being minimal during the day on the lake bottom, and increasing at night, particularly inshore.
Because the functional response of the native predator was spatiotemporally consistent, the above pattern was driven by changes in the invader functional response over the diel cycle. In particular, the functional response of H. anomala was significantly reduced on the lake bottom during the daytime relative to night, and predation was especially pronounced in shallow surface waters.
We demonstrate the context dependency of the effects of an invasive predator on prey populations and emphasise the utility of functional responses as tools to inform our understanding of predator–prey interactions. In situ manipulations integrate experimental rigour with field relevance and have the potential to reveal how impacts manifest over a range of spatiotemporal scales.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Advances in the understanding of ecological factors determining predatorprey interactions have provided a strong theoretical background on diet preferences of predators. We examined patterns of jaguar predation on caiman in southern Pantanal, Brazil. We investigated factors affecting predation rates and vulnerability of caiman to predation by jaguars. We recorded 114 caiman mortality incidents. Predation accounted for 62.3% (n = 71) of all caiman found dead, while other causes of mortality (nonpredation) accounted for 37.7% (n = 43). We found that jaguars prey on a broad size range of caiman body and caiman predation was influenced by distance to forests. During dry seasons, 70% (n = 49) of deaths were due to predation, while 30% (n = 21) were due to nonpredation causes. However, we found no significant relationship between annual and monthly killings of caiman and rainfall totals by year and month (r = 0.130, r = -0.316). The annual flooding regime may be a more important factor influencing prey selection by jaguars. Although neotropical crocodilians are relatively well studied, their interactions with jaguars have been mostly ignored and should be prioritized in future studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In conjunction with the North Pacific Continuous Plankton Recorder program, we conducted surveys of seabirds from June 2002 to June 2007. Here, we tested the hypotheses of (i) east–west variations in coupled plankton and seabird abundance, and (ii) that surface-feeding and diving seabirds vary in their relationships to primary productivity and mesozooplankton species abundance and diversity. To test these hypotheses, we developed statistical models for 20 species of seabirds and 12 zooplankton taxonomic groups. Seabird density was highly variable between seasons, but was consistently higher in the western than eastern North Pacific. Seabird diversity was greater in the east. Zooplankton abundance did not differ between regions. We found associations at the “bulk” level between seabird density and net primary productivity, but only one association between seabirds and total zooplankton abundance or diversity. However, we found many relationships between seabird species and the abundance of different zooplankton summarized at the genus or family level. Some of these taxonomic relationships reflect direct predator–prey interactions, while others may reflect zooplankton that serve as ecological indicators of other prey, such as micronekton, upon which the birds may feed. Surface or near-surface feeding, mostly piscivorous seabirds, did not differ systematically from diving, mainly planktivorous seabirds in their zooplankton associations. Seabirds apparently respond to zooplankton taxonomic groupings more so than bulk zooplankton characteristics, such as abundance or diversity. Macro-ecological studies of remote marine ecosystems using zooplankton and seabirds as ecological indicators provide a framework for understanding and assessing spatial and temporal variations in these difficult-to-study pelagic environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predator–prey interactions are fundamental in the evolution and structure of ecological communities. Our understanding, however, of the strategies used in pursuit and evasion remains limited. Here, we report on the hunting dynamics of the world's fastest land animal, the cheetah, Acinonyx jubatus. Using miniaturized data loggers, we recorded fine-scale movement, speed and acceleration of free-ranging cheetahs to measure how hunting dynamics relate to chasing different sized prey. Cheetahs attained hunting speeds of up to 18.94 m s-1 and accelerated up to 7.5 m s-2 with greatest angular velocities achieved during the terminal phase of the hunt. The interplay between forward and lateral acceleration during chases showed that the total forces involved in speed changes and turning were approximately constant over time but varied with prey type. Thus, rather than a simple maximum speed chase, cheetahs first accelerate to decrease the distance to their prey, before reducing speed 5–8 s from the end of the hunt, so as to facilitate rapid turns to match prey escape tactics, varying the precise strategy according to prey species. Predator and prey thus pit a fine balance of speed against manoeuvring capability in a race for survival.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary
-Predatory functional responses play integral roles in predator–prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species.
-Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator–prey interactions and thus the predictive capability of the comparative functional response approach.
-We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses.
-Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator.
-Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator.
-This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:


1. Predator–prey interactions are mediated by the structural complexity of habitats, but disentangling the many facets of structure that contribute to this mediation remains elusive. In a world replete with altered landscapes and biological invasions, determining how structure mediates the interactions between predators and novel prey will contribute to our understanding of invasions and predator–prey dynamics in general.
2. Here, using simplified experimental arenas, we manipulate predator-free space, whilst holding surface area and volume constant, to quantify the effects on predator–prey interactions between two resident gammarid predators and an invasive prey, the Ponto-Caspian corophiid Chelicorophium curvispinum.
3. Systematically increasing predator-free space alters the functional responses (the relationship between prey density and consumption rate) of the amphipod predators by reducing attack rates and lengthening handling times. Crucially, functional response shape also changes subtly from destabilizing Type II towards stabilizing Type III, such that small increases in predator-free space to result in significant reductions in prey consumption at low prey densities.
4. Habitats with superficially similar structural complexity can have considerably divergent consequences for prey population stability in general and, particularly, for invasive prey establishing at low densities in novel habitats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the current challenges in evolutionary ecology is understanding the long-term persistence of contemporary-evolving predator–prey interactions across space and time. To address this, we developed an extension of a multi-locus, multi-trait eco-evolutionary individual-based model that incorporates several interacting species in explicit landscapes. We simulated eco-evolutionary dynamics of multiple species food webs with different degrees of connectance across soil-moisture islands. A broad set of parameter combinations led to the local extinction of species, but some species persisted, and this was associated with (1) high connectance and omnivory and (2) ongoing evolution, due to multi-trait genetic variability of the embedded species. Furthermore, persistence was highest at intermediate island distances, likely because of a balance between predation-induced extinction (strongest at short island distances) and the coupling of island diversity by top predators, which by travelling among islands exert global top-down control of biodiversity. In the simulations with high genetic variation, we also found widespread trait evolutionary changes indicative of eco-evolutionary dynamics. We discuss how the ever-increasing computing power and high-resolution data availability will soon allow researchers to start bridging the in vivo–in silico gap.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-native predators may have negative impacts on native communities, and these effects may be dependent on interactions among multiple non-native predators. Sequential invasions by predators can enhance risk for native prey. Prey have a limited ability to respond to multiple threats since appropriate responses may conflict, and interactions with recent invaders may be novel. We examined predator–prey interactions among two non-native predators, a recent invader, the African jewelfish, and the longer-established Mayan cichlid, and a native Florida Everglades prey assemblage. Using field enclosures and laboratory aquaria, we compared predatory effects and antipredator responses across five prey taxa. Total predation rates were higher for Mayan cichlids, which also targeted more prey types. The cichlid invaders had similar microhabitat use, but varied in foraging styles, with African jewelfish being more active. The three prey species that experienced predation were those that overlapped in habitat use with predators. Flagfish were consumed by both predators, while riverine grass shrimp and bluefin killifish were eaten only by Mayan cichlids. In mixed predator treatments, we saw no evidence of emergent effects, since interactions between the two cichlid predators were low. Prey responded to predator threats by altering activity but not vertical distribution. Results suggest that prey vulnerability is affected by activity and habitat domain overlap with predators and may be lower to newly invading predators, perhaps due to novelty in the interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the factors that influence the distribution and abundance of predators, including sharks, is important for predicting the impacts of human changes to the environment. Such studies are particularly important in Florida Bay, USA where there are planned large-scale changes to patterns of freshwater input from the Everglades ecosystem. Studies of many marine predators suggest that links between predator and prey habitat use may vary with spatial scale, but there have been few studies of the role of prey distribution in shaping habitat use and abundance of sharks. We used longline catches of sharks and trawls for potential teleost prey to determine the influence of teleost abundance on shark abundance at the scale of regions and habitats in Florida Bay. We found that shark catch per unit effort (CPUE) was not linked to CPUE ofteleosts at the scale of sampling sites, but shark CPUE was positively correlated with the mean CPUE for teleosts within a region. Although there does not appear to be a strong match between the abundance of teleosts and sharks at small spatial scales, regional shark abundance is likely driven, at least partially, by the availability of prey. Management strategies that influence teleost abundance will have cascading effects to higher trophic levels in Florida Bay.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Apex predators are often assumed to be dietary generalists and, by feeding on prey from multiple basal nutrient sources, serve to couple discrete food webs. But there is increasing evidence that individual level dietary specialization may be common in many species, and this has not been investigated for many marine apex predators. 2. Because of their position at or near the top of many marine food webs, and the possibility that they can affect populations of their prey and induce trophic cascades, it is important to understand patterns of dietary specialization in shark populations. 3. Stable isotope values from body tissues with different turnover rates were used to quantify patterns of individual specialization in two species of ‘generalist’ sharks (bull sharks, Carcharhinus leucas, and tiger sharks, Galeocerdo cuvier). 4. Despite wide population-level isotopic niche breadths in both species, isotopic values of individual tiger sharks varied across tissues with different turnover rates. The population niche breadth was explained mostly by variation within individuals suggesting tiger sharks are true generalists. In contrast, isotope values of individual bull sharks were stable through time and their wide population level niche breadth was explained by variation among specialist individuals. 5. Relative resource abundance and spatial variation in food-predation risk tradeoffs may explain the differences in patterns of specialization between shark species. 6. The differences in individual dietary specialization between tiger sharks and bull sharks results in different functional roles in coupling or compartmentalizing distinct food webs. 7. Individual specialization may be an important feature of trophic dynamics of highly mobile marine top predators and should be explicitly considered in studies of marine food webs and the ecological role of top predators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The depredation of semi-domesticated reindeer by large carnivores reflects an important human-wildlife conflict in Fennoscandia. Recent studies have revealed that brown bears (Ursus arctos) may kill substantial numbers of reindeer calves (Rangifer tarandus tarandus) in forest areas in Sweden. Several authors have suggested that predation risk is an important driver of habitat selection in wild Rangifer populations where predation is a limiting factor, but little is known about these mechanisms in semi-domesticated populations. We examined the habitat selection of female reindeer in relation to spatial and temporal variations in brown bear predation risk on the reindeer calving grounds and evaluated the simultaneous responses of brown bears and reindeer to landscape characteristics. We used GPS data from 110 reindeer years (97 individuals) and 29 brown bear years (19 individuals), from two reindeer herding districts in the forest area of northern Sweden. Our results did not indicate that reindeer alter their behavior in response to spatiotemporal variation in brown bear predation risk, on the scale of the calving range. Instead, we suggest that spatiotemporal behavioral adjustments by brown bears were the main driver of prey-predator interactions in our study system. Contrasting responses by brown bears and reindeer to clear-cuts and young forest indicate that forestry can influence species interactions and possibly yield negative consequences for the reindeer herd. Even if clear-cuts may be beneficial in terms of calf survival, logging activity will eventually cause greater abundance of young regenerating forest, reducing available reindeer habitats and increasing habitat preferred by brown bears. Domestication may have made semi-domesticated reindeer in Fennoscandia less adapted to cope with predators. Areal restrictions, limiting the opportunity for dispersion and escape, possibly make the calves more susceptible to predation. Also, a generally higher population density in semi-domesticated herds compared to wild populations can make dispersion a less efficient strategy and the reindeer calves easier prey. Overall, the lack of ability of the reindeer females to reduce brown bear encounter risk on the scale of the calving range is probably an important reason for the high brown bear predation rates on reindeer calves documented in our study areas. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doctorat réalisé en cotutelle entre l'Université de Montréal et l'Université Paul Sabatier-Toulouse III

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non-consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non-native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non-native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non-consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non-native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter-related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non-native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non-native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.