945 resultados para precision farming
Resumo:
Integrity of Real Time Kinematic (RTK) positioning solutions relates to the confidential level that can be placed in the information provided by the RTK system. It includes the ability of the RTK system to provide timely valid warnings to users when the system must not be used for the intended operation. For instance, in the controlled traffic farming (CTF) system that controls traffic separates wheel beds and root beds, RTK positioning error causes overlap and increases the amount of soil compaction. The RTK system’s integrity capacity can inform users when the actual positional errors of the RTK solutions have exceeded Horizontal Protection Levels (HPL) within a certain Time-To-Alert (TTA) at a given Integrity Risk (IR). The later is defined as the probability that the system claims its normal operational status while actually being in an abnormal status, e.g., the ambiguities being incorrectly fixed and positional errors having exceeded the HPL. The paper studies the required positioning performance (RPP) of GPS positioning system for PA applications such as a CTF system, according to literature review and survey conducted among a number of farming companies. The HPL and IR are derived from these RPP parameters. A RTK-specific rover autonomous integrity monitoring (RAIM) algorithm is developed to determine the system integrity according to real time outputs, such as residual square sum (RSS), HDOP values. A two-station baseline data set is analyzed to demonstrate the concept of RTK integrity and assess the RTK solution continuity, missed detection probability and false alarm probability.
Resumo:
The case describes the development of MyFARM’s internationalization plan, a service of Deimos Engenharia, under the GloCal Radar. This space engineering company hired Lisbon Consulting Company to undertake the project to overcome its lack of market orientation. The consultants’ analysis revealed Stevens County, Kansas, as the market with the highest potential for MyFARM. A suitable entry strategy and adaptation of the service for the local market was proposed. The case culminates with the Board of Directors discussing the viability of implementing the consultants’ recommendations to start diversifying their sources of revenue streams.
Resumo:
The objective of this study was to develop and evaluate a mathematical model used to estimate the daily amino acid requirements of individual growing-finishing pigs. The model includes empirical and mechanistic model components. The empirical component estimates daily feed intake (DFI), BW, and daily gain (DG) based on individual pig information collected in real time. Based on DFI, BW, and DG estimates, the mechanistic component uses classic factorial equations to estimate the optimal concentration of amino acids that must be offered to each pig to meet its requirements. The model was evaluated with data from a study that investigated the effect of feeding pigs with a 3-phase or daily multiphase system. The DFI and BW values measured in this study were compared with those estimated by the empirical component of the model. The coherence of the values estimated by the mechanistic component was evaluated by analyzing if it followed a normal pattern of requirements. Lastly, the proposed model was evaluated by comparing its estimates with those generated by the existing growth model (InraPorc). The precision of the proposed model and InraPorc in estimating DFI and BW was evaluated through the mean absolute error. The empirical component results indicated that the DFI and BW trajectories of individual pigs fed ad libitum could be predicted 1 d (DFI) or 7 d (BW) ahead with the average mean absolute error of 12.45 and 1.85%, respectively. The average mean absolute error obtained with the InraPorc for the average individual of the population was 14.72% for DFI and 5.38% for BW. Major differences were observed when estimates from InraPorc were compared with individual observations. The proposed model, however, was effective in tracking the change in DFI and BW for each individual pig. The mechanistic model component estimated the optimal standardized ileal digestible Lys to NE ratio with reasonable between animal (average CV = 7%) and overtime (average CV = 14%) variation. Thus, the amino acid requirements estimated by model are animal- and time-dependent and follow, in real time, the individual DFI and BW growth patterns. The proposed model can follow the average feed intake and feed weight trajectory of each individual pig in real time with good accuracy. Based on these trajectories and using classical factorial equations, the model makes it possible to estimate dynamically the AA requirements of each animal, taking into account the intake and growth changes of the animal. © 2012 American Society of Animal Science. All rights reserved.
Resumo:
Remote sensing (RS) with aerial robots is becoming more usual in every day time in Precision Agriculture (PA) practices, do to their advantages over conventional methods. Usually, available commercial platforms providing off-the-shelf waypoint navigation are adopted to perform visual surveys over crop fields, with the purpose to acquire specific image samples. The way in which a waypoint list is computed and dispatched to the aerial robot when mapping non empty agricultural workspaces has not been yet discussed. In this paper we propose an offline mission planner approach that computes an efficient coverage path subject to some constraints by decomposing the environment approximately into cells. Therefore, the aim of this work is contributing with a feasible waypoints-based tool to support PA practices
Resumo:
Growers working together have proven to be a successful method for improving the utilization of farm resources and accelerating the adoption of the Sugar Yield Decline Joint Venture principles (SYDJV). The Pinnacle Precision Farming Group was formed in 2004 with the aim to bring together the ideas, knowledge and resources of growers in the Herbert region. Along with their common interest in controlled traffic, minimal tillage and crop rotations, the grower group utilize a farm machinery contractor to provide some of their major farming operations. This paper provides an insight into the changes made by the Pinnacle Precision Farming Group and their journey to adopt the new farming system practices. This paper also details the changes made by the group machinery contractor and a comparison of the old and new farming systems used by a group member. A focus point of the document is the impact of the new farming system on the economic, social and environmental components of the farming business. Analysis of the new farming system with a legume crop rotation revealed an increase in the farm gross margin by AU$22 024 and, in addition, a reduction in tractor operation time by 38% across the whole farm. This represents a return on marginal capital of 14.68 times the original capital outlay required by the group member. Using the new farming system without a legume crop will still improve the group members whole of farm gross margin by AU$6 839 and reduce tractor operation time by 43% across the whole farm. The Pinnacle Precision Farming group recognize the need to continually improve their farming businesses and believe that the new farming system principles are critical for the long term viability of the industry. [U$1 = AU$1.19].
Resumo:
This thesis investigates the use of near infrared (NIR) spectroscopic methods for rapid measurement of nutrient elements in mill mud and mill ash. Adoption of NIR-based analyses for carbon, nitrogen, phosphorus, potassium and silicon will allow Australian sugarcane farmers to comply with recent legislative changes, and act within recommended precision farming frameworks. For these analyses, NIR spectroscopic methods surpass several facets of traditional wet chemistry techniques, dramatically reducing costs, required expertise and chemical exposure, while increasing throughput and access to data. Further, this technology can be applied in various modes, including laboratory, at-line and on-line installations, allowing targeted measurement.
Resumo:
Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.
Resumo:
Altas produtividades de milho são dependentes da interação de fatores como clima, solo e manejo. O manejo da adubação nitrogenada é um dos principais condicionantes da produtividade, pela complexa dinâmica do nitrogênio (N) nos sistemas agrícolas. É com base nessa dinâmica que se busca estimar o potencial de suprimento de N pelo solo e o seu aproveitamento pela cultura, o que possibilita definir as recomendações de adubação. Contudo, a maioria das variáveis que influencia a necessidade de N na adubação pode mudar no espaço e no tempo, como é o caso das características edafoclimáticas que interferem no potencial de suprimento do nutriente pelo solo. Assim, para se refinar o manejo da adubação nitrogenada, é preciso considerar a sua variabilidade espacial e temporal, especialmente dos atributos do solo. Isso pode ser obtido pela utilização de técnicas que envolvem sistema de informações geográficas (SIG), sistema de posicionamento global (GPS), geoestatística e uso de sensores. Essas técnicas vêm sendo utilizadas na agricultura de precisão. Em condições de lavoura, tem-se observado instabilidade nas produtividades de milho em resposta às aplicações de fertilizantes nitrogenados baseadas na variabilidade espacial do solo (WELSH et al., 2003). Aliado a esse fato, tem-se, também, um custo elevado e certa demora na obtenção de informações espacializadas do solo para determinação de adubação a taxas variáveis. Nesse cenário, a utilização de medidores de clorofila portáteis constitui uma alternativa que auxilia no reconhecimento do estado nutricional do milho, possibilitando diagnosticar rapidamente zonas deficientes em N e viabilizar intervenções para correção ainda durante a safra. Nesta revisão, são apresentados aspectos sobre manejo da cultura e disponibilidade e recomendação de N para o milho na região do Cerrado, associando o uso de técnicas de agricultura de precisão na busca de maior eficiência da adubação nitrogenada.
Resumo:
Nanotechnology has relevance to applications in all areas of agri-food including agriculture, aquaculture, production, processing, packaging, safety and nutrition. Scientific literature indicates uncertainties in food safety aspects about using nanomaterials due to potential health risks. To date the agri-food industry's awareness and attitude towards nanotechnology have not been addressed. We surveyed the awareness and attitudes of agri-food organisations on the island of Ireland (IoI) with regards to nanotechnology. A total of 14 agri-food stakeholders were interviewed and 88 agri-food stakeholders responded to an on-line questionnaire. The findings indicate that the current awareness of nanotechnology applications in the agri-food sector on the IoI is low and respondents are neither positive nor negative towards agri-food applications of nanotechnology. Safer food, reduced waste and increased product shelf life were considered to be the most important benefits to the agri-food industry. Knowledge of practical examples of agri-food applications is limited however opportunities were identified in precision farming techniques, innovative packaging, functional ingredients and nutrition of foods, processing equipment, and safety testing. Perceived impediments to nanotechnology adoption were potential unknown human health and environmental impacts, consumer acceptance and media framing. The need for a risk assessment framework, research into long term health and environmental effects, and better engagement between scientists, government bodies, the agri-food industry and the public were identified as important.
Resumo:
Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.
Resumo:
Vor dem Hintergund der Integration des wissensbasierten Managementsystems Precision Farming in den Ökologischen Landbau wurde die Umsetzung bestehender sowie neu zu entwickelnder Strategien evaluiert und diskutiert. Mit Blick auf eine im Precision Farming maßgebende kosteneffiziente Ertragserfassung der im Ökologischen Landbau flächenrelevanten Leguminosen-Grasgemenge wurden in zwei weiteren Beiträgen die Schätzgüten von Ultraschall- und Spektralsensorik in singulärer und kombinierter Anwendung analysiert. Das Ziel des Precision Farming, ein angepasstes Management bezogen auf die flächeninterne Variabilität der Standorte umzusetzen, und damit einer Reduzierung von Betriebsmitteln, Energie, Arbeit und Umwelteffekten bei gleichzeitiger Effektivitätssteigerung und einer ökonomischen Optimierung zu erreichen, deckt sich mit wesentlichen Bestrebungen im Ökogischen Landbau. Es sind vorrangig Maßnahmen zur Erfassung der Variabilität von Standortfaktoren wie Geländerelief, Bodenbeprobung und scheinbare elektrische Leitfähigkeit sowie der Ertragserfassung über Mähdrescher, die direkt im Ökologischen Landbau Anwendung finden können. Dagegen sind dynamisch angepasste Applikationen zur Düngung, im Pflanzenschutz und zur Beseitigung von Unkräutern aufgrund komplexer Interaktionen und eines eher passiven Charakters dieser Maßnahmen im Ökologischen Landbau nur bei Veränderung der Applikationsmodelle und unter Einbindung weiterer dynamischer Daten umsetzbar. Beispiele hiefür sind einzubeziehende Mineralisierungsprozesse im Boden und organischem Dünger bei der Düngemengenberechnung, schwer ortsspezifisch zuzuordnende präventive Maßnamen im Pflanzenschutz sowie Einflüsse auf bodenmikrobiologische Prozesse bei Hack- oder Striegelgängen. Die indirekten Regulationsmechanismen des Ökologischen Landbaus begrenzen daher die bisher eher auf eine direkte Wirkung ausgelegten dynamisch angepassten Applikationen des konventionellen Precision Farming. Ergänzend sind innovative neue Strategien denkbar, von denen die qualitätsbezogene Ernte, der Einsatz hochsensibler Sensoren zur Früherkennung von Pflanzenkrankheiten oder die gezielte teilflächen- und naturschutzorientierte Bewirtschaftung exemplarisch in der Arbeit vorgestellt werden. Für die häufig große Flächenanteile umfassenden Leguminosen-Grasgemenge wurden für eine kostengünstige und flexibel einsetzbare Ertragserfassung die Ultraschalldistanzmessung zur Charakterisierung der Bestandeshöhe sowie verschiedene spektrale Vegetationsindices als Schätzindikatoren analysiert. Die Vegetationsindices wurden aus hyperspektralen Daten nach publizierten Gleichungen errechnet sowie als „Normalized Difference Spectral Index“ (NDSI) stufenweise aus allen möglichen Wellenlängenkombinationen ermittelt. Die Analyse erfolgte für Ultraschall und Vegetationsindices in alleiniger und in kombinierter Anwendung, um mögliche kompensatorische Effekte zu nutzen. In alleiniger Anwendung erreichte die Ultraschallbestandeshöhe durchweg bessere Schätzgüten, als alle einzelnen Vegetationsindices. Bei den letztgenannten erreichten insbesondere auf Wasserabsorptionsbanden basierende Vegetationsindices eine höhere Schätzgenauigkeit als traditionelle Rot/Infrarot-Indices. Die Kombination beider Sensorda-ten ließ eine weitere Steigerung der Schätzgüte erkennen, insbesondere bei bestandesspezifischer Kalibration. Hierbei kompensieren die Vegetationsindices Fehlschätzungen der Höhenmessung bei diskontinuierlichen Bestandesdichtenänderungen entlang des Höhengradienten, wie sie beim Ährenschieben oder durch einzelne hochwachsende Arten verursacht werden. Die Kombination der Ultraschallbestandeshöhe mit Vegetationsindices weist das Potential zur Entwicklung kostengünstiger Ertragssensoren für Leguminosen-Grasgemenge auf. Weitere Untersuchungen mit hyperspektralen Vegetationsindices anderer Berechnungstrukturen sowie die Einbindung von mehr als zwei Wellenlängen sind hinsichtlich der Entwicklung höherer Schätzgüten notwendig. Ebenso gilt es, Kalibrierungen und Validationen der Sensorkombination im artenreichen Grasland durchzuführen. Die Ertragserfassung in den Leguminosen-Grasgemengen stellt einen wichtigen Beitrag zur Erstellung einer Ertragshistorie in den vielfältigen Fruchtfolgen des Ökologischen Landbaus dar und ermöglicht eine verbesserte Einschätzung von Produktionspotenzialen und Defizitarealen für ein standortangepasstes Management.
Resumo:
Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).
Resumo:
With a wide range of applications benefiting from dense network air temperature observations but with limitations of costs, existing siting guidelines and risk of damage to sensors, new methods are required to gain a high resolution understanding of the spatio-temporal patterns of urban meteorological phenomena such as the urban heat island or precision farming needs. With the launch of a new generation of low cost sensors it is possible to deploy a network to monitor air temperature at finer spatial resolutions. Here we investigate the Aginova Sentinel Micro (ASM) sensor with a bespoke radiation shield (together < US$150) which can provide secure near-real-time air temperature data to a server utilising existing (or user deployed) Wireless Fidelity (Wi-Fi) networks. This makes it ideally suited for deployment where wireless communications readily exist, notably urban areas. Assessment of the performance of the ASM relative to traceable standards in a water bath and atmospheric chamber show it to have good measurement accuracy with mean errors < ± 0.22 °C between -25 and 30 °C, with a time constant in ambient air of 110 ± 15 s. Subsequent field tests of it within the bespoke shield also had excellent performance (root-mean-square error = 0.13 °C) over a range of meteorological conditions relative to a traceable operational UK Met Office platinum resistance thermometer. These results indicate that the ASM and bespoke shield are more than fit-for-purpose for dense network deployment in urban areas at relatively low cost compared to existing observation techniques.
Resumo:
In recent years, the productivity of cotton in Brazil has been progressively decreasing, often the result of the reniform nematode Rotylenchulus reniformis. This species call reduce crop productivity by up to 40%. Nematodes can be controlled by nematicides but, because of expense and toxicity, application of nematicides to large crop areas may be undesirable. In this Work. a methodology using geostatistics for quantifying the risk of nematicide application to small crop areas is proposed. This risk, in economic terms, can be compared to nematicide cost to develop an optimal strategy for Precision Farming, Soil (300 cm(3)) was sampled in a regular network from a R. reniformis-infested area that was a cotton monoculture for 20 years. The number of nematodes in each sample was counted. The nematode number per volume of soil was characterized using geostatistics, and 100 conditional simulations were conducted. Based on the simulations, risk maps were plotted showing the areas where nematicide should be applied in a Precision Farming context. The methodology developed can be applied to farming in countries that ale highly dependent on agriculture, with useful economic implications.