902 resultados para precipitation hardening


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allvac 718 Plus and Haynes 282 are relatively new precipitation hardening nickel based superalloys with good high temperature mechanical properties. In addition, the weldability of these superalloys enhances easy fabrication. The combination of high temperature capabilities and superior weldability is unmatched by other precipitation hardening superalloys and linked to the amount of the γ’ hardening precipitates in the materials. Hence, it is these properties that make Allvac 718 Plus and Haynes 282 desirable in the manufacture of hot sections of aero engine components. Studies show that cast products are less weldable than wrought products. Segregation of elements in the cast results in inhomogeneous composition which consequently diminishes weldability. Segregation during solidification of the cast products results in dendritic microstructure with the segregating elements occupying interdendritic regions. These segregating elements are trapped in secondary phases present alongside γ matrix. Studies show that in Allvac 718Plus, the segregating phase is Laves while in Haynes 282 the segregating phase is not yet fully determined. Thus, the present study investigated the effects of homogenization heat treatments in eliminating segregation in cast Allvac 718 Plus and Haynes 282. Paramount to the study was the effect of different homogenization temperatures and dwell time in the removal of the segregating phases. Experimental methods used to both qualify and quantify the segregating phases included SEM, EDX analysis, manual point count and macro Vickers hardness tests. Main results show that there is a reduction in the segregating phases in both materials as homogenization proceeds hence a disappearance of the dendritic structure. In Allvac 718 Plus, plate like structures is observed to be closely associated with the Laves phase at low temperatures and dwell times. In addition, Nb is found to be segregating in the interdendritic areas. The expected trend of increase in Laves as a result of the dissolution of the plate like structures at the initial stage of homogenization is only detectable for few cases. In Haynes 282, white and grey phases are clearly distinguished and Mo is observed to be segregating in interdendritic areas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to reduce the cost of Al-Sc alloys and maintain their mechanical properties, the microstructure and mechanical properties of Al-0.24 wt% Sc-0.07 wt% Yb in comparison with Al-0.28 wt% Sc alloys were studied. The aging behaviour, precipitate morphologies, precipitate coarsening and precipitation hardening of both alloys were investigated. The average diameter and the size distribution of nanoscale Al3Sc and Al-3(Sc,Yb) precipitates at various aging conditions were measured. Transmission electron microscopy (TEM) and high-resolution TEM were used to deeply understand the precipitate evolution. A maximum hardness around 73 (HV30) was obtained with a precipitate diameter from 4.3 to 5.6 nm for both alloys. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The successful application of the phenomenon of pre­cipitation hardening to aluminum and copper has indicated the possibility of hardening all metals in the same way. The phenomenon of age hardening was discoveredin 1911, and since that time much research has been car­ried on in all parts of the world on various alloy sys­tems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A review of the research work that has been carried out thus far relating the casting and heat treatment variables to the structure and mechanical properties of Al–7Si–Mg (wt-%) is presented here. Although specifications recommend a wide range of magnesium contents and a fairly high content of iron, a narrow range of magnesium contents, closer to either the upper or lower specified limits depending on the properties desired, and a low iron content will have to be maintained to obtain optimum and consistent mechanical properties. A few studies have revealed that the modification of eutectic silicon slightly increases ductility and fracture toughness and also that the effect of modification is predominant at low iron content. Generally, higher solidification rates give superior mechanical properties. Delayed aging (the time elapsed between quenching and artificial aging during precipitation hardening) severely affects the strength of the alloy. The mechanism of delayed aging can be explained on the basis of Pashley's kinetic model. It has been reported that certain trace additions (cadmium, indium, tin, etc.) neutralise the detrimental effect of delayed aging. In particular, it should be noted that delayed aging is not mentioned in any of the specifications. With reference to the mechanism by which trace additions neutralise the detrimental effect of delayed aging, various hypotheses have been postulated, of which impurity–vacancy interaction appears to be the most widely accepted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kocks' formalism for analysing steady state deformation data for the case where Cottrell-Stokes law is valid is extended to incorporate possible back stresses from solution and/or precipitation hardening, and dependence of pre-exponential factor on the applied stress. A simple graphical procedure for exploiting these equations is demonstrated by analyzing tensile steady state data for a type 316 austentic stainless steel for the temperature range 1023 to 1223 K. In this instance, the computed back stress values turned out to be negative, a physically meaningless result. This shows that for SS 316, deformation in this temperature regime can not be interpreted in terms of a mechanism that obeys Cottrell-Stokes law.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminum scandium binary alloys represent a promising precipitation-hardening alloy system. However, the hardness of the binary alloys decreases with the rapid coarsening of Al3Sc precipitate during high-temperature aging. In the current study, we report a new approach to compensate for the loss of mechanical properties by combining rapid solidification with very small ternary addition of transition metal Ni. This addition yields dispersion, and at a critical concentration improves the mechanical properties. We explore additions of a maximum of 0.06 at. pct of Nickel to a binary Al-0.14 at. pct Sc alloy, which yield nickel-rich dispersions. We report two kinds of biphasic dispersions containing AlNi2Sc/Al9Ni2 and alpha-Al/Al9Ni2 phase combinations. The maximum improvement in mechanical properties occurs with the addition of 0.045 at. pct Ni with a yield strength of 239 +/- A 7 MPa for an aging treatment at 583 K (310 A degrees C) for 15 hours. DOI: 10.1007/s11661-013-1624-z (C) The Minerals, Metals & Materials Society and ASM International 2013

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The results of the investigation on Solution Heat Treatment of Plasma Nitrided (SHTPN) precipitation-hardened steel 15-5PH are presented. The layers have been obtained by the plasma nitriding process followed by solution heat treatment at different temperatures. The influence of the solution heat treatment after nitriding on the dissolution process of the nitrided layer has been considered. The nitrided layers were studied by scanning electron microscopy, X-ray microanalysis (EDX), and X-Ray diffraction. Micro-hardness tests of the nitrided layers and solubilized nitrided layers have been carried out and interpreted by considering the processing conditions. It was found that high nitrogen austenitic cases could be obtained after SHTPN of martensitic precipitation-hardened steel (15-5PH). When Solution Heat Treatment (SHT) was performed at 1100 °C, some precipitates were observed. The amount of precipitates significantly reduced when the temperature increased. The EDX microanalysis indicated that the precipitate may be chromium niobium nitride. When the precipitation on the austenite phase occurred in small amount, the corrosion resistance increased in SHTPN specimens and the pit nucleation potential also increased. The best corrosion result occurred for SHT at 1200 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orientation relationships between Mg24Y5 precipitates and matrix in a Mg-Y alloy were accurately determined using Kikuchi line diffraction. The Burgers relationship with habit planes of {10 (1) over bar0}(H) and {31 (4) over bar0}(H) were observed for all precipitates. Compared with the Mg17Al12 precipitate in AZ91, the precipitation hardening effect in this alloy was significantly increased. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.