955 resultados para prawn larvae
Resumo:
Three different types of culture media: (i) 100% brine (B 100 ), (ii) 75% brine and 25% crude salt (B 75 CS 25 ), and 50% brine and 50% crude salt (B 50 CS 50) were tested to evaluate the possible use of brackish water reconstituted from the crude salt for the production of M. rosenbergii post-larvae. The production rate of 25.26±0.20 PI/l with a corresponding survival rate of 84.20±0.66% was significantly higher (P<0.05) for the larvae reared on B100 than that of 22.10±0.57 Pl/l with a corresponding survival rate of 73.68±1.89% on B50CS50. Larvae cultured on B75CS25 did not show any significant difference (P<0.05) in production as well as in survival of post-larvae than that on B100. The result shows that, for rearing of prawn larvae, use of brine can be replaced up to 25% without any undue reduction in production of post-larvae. However, the production as well as survival rate of post-larvae with 50% replacement (B50CS50) is also appreciable. It is assumed that the mineral constituents of natural seawater might have some triggering effects on prawn larvae in closing their larval cycle.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The present study analyzed the effects of prey density, the time of day, and ontogenetic development on the predation of Artemia nauplii by the larvae of the Amazon river prawn, Macrobrachium amazonicum, as well as possible synergy among these factors. Larvae were raised in 120-L tanks with biological filter systems, and fed on recently hatched Artemia nauplii, using two feeding management protocols: (a) fed once per day at 2000 h (high density HD) and (b) half of the ration provided at 2000 h, complemented at 0800 h the following day by a replacement of the nauplii consumed up to a maximum of the full ration (low density with replacement LDWR). Each treatment consisted of six replicates. The consumption of nauplii was estimated prior to the feeding times. Consumption varied according to time of day, ontogenetic development, and feeding protocol. The larvae ingested more nauplii during the daytime at most developmental stages. Ingestion rates were similar during the day under both treatments, but at night the higher density of prey in the HD treatment caused a higher encounter rate and increased ingestion of nauplii by the larvae. Among the performance indicators only survival was greater in HD in comparison with LDWR; productivity and dry weight were similar. The results indicate a circadian trophic rhythm in M. amazonicum, with the encounter rate being an important mechanism for the capture of prey during the night. A second mechanism probably the visual system aids the perception of prey during the daytime. Based on these results, we suggest that feeding captive Amazon river prawn larvae only once a day would be appropriate and economically beneficial. Further work is necessary to determine the most effective time that this single feed should be applied.
Resumo:
Live food organisms play a vital role in the artificial propagation of penaeid prawn seeds. The methods practiced for the culture of phyto and zooplankton for rearing prawn larvae through their various developmental stages are reviewed. Selection of a suitable species depends mainly on the culture characteristics, local environmental factors and the food requirements of the species of prawns cultured. Suitability of a few species isolated from Karwar waters is discussed.
Resumo:
Seasonal variations in the occurrence and abundance of penaeid prawn larvae in the Mandovi and Zuari estuaries of Goa were studied. Larvae and post-larvae of commercially important species viz. Metapenaeus dobsoni (Miers), M.affinis (H. Milne Edwards). M. Monoceros (Fabricius), Penaeus merguiensis de Man and Parapenaeopsis stylifera (H. Milne Edwards) were recorded in that order of abundance. Protozoea and mysis stages were dominant in surface zooplankton collections while the post-larvae were more in the bottom samples. Based on larval density, M. dobsoni appeared to be a continuous breeder. The active spawning periods in other species were during the late post-monsoon and pre-monsoon seasons varying with the species. Peak recruitment of post-larvae in the estuaries was observed mostly during southwest monsoon months (June to September). Penaeid prawn larval ingression was more in the Zuari estuary compared to the Mandovi estuary. Their numerical abundance gradually decreased towards the upstream areas. The feasibility of large scale collection of penaeid prawn larvae for aquaculture is indicated.
Resumo:
A study was carried out with three replicates to determine the effects of feeding Moina micrura enriched with astaxanthin alone (M1) or astaxanthin in combination with either vitamin E (M2), vitamin D (M3) or Cod Liver oil (M4) on the growth, survival and fatty acid composition of giant fresh water prawn Macrobrachium rosenbergii (de Man) larvae. Growth rate was expressed as the time taken to the settlement of 95% post larvae. Maximum growth, the lowest time taken to the 95% PL settlement (38.5±0.50 days), was observed in larvae fed with M3 Moina. The highest survival rate (66.0±1.00%) was observed in those fed with M4 Moina and the second highest survival (61.0±1.00%) and growth rates (40.0±0.00 days) were shown with M2 Moina. The minimum values for both growth (42.5±0.50 days) and survival (33.0±1.50%) were observed in the group fed un-enriched Moina. Results also showed that the survival of prawn larvae increased as the quantities of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased in the dietary Moina. The highest levels of EPA (5.57±0.21%), DHA (3.50±0.21%) and highest total Highly Unsaturated Fatty Acids (HUFA) (13.87±0.68%) were seen in the Moina fed on astaxanthin and Cod Liver Oil (CLO). The results of the study showed that the nutritive quality of Moina, with respect to important fatty acids, can be increased by enrichment and will influence the growth, survival and the fatty acid composition of fresh water prawn larvae fed on them.
Resumo:
Giant freshwater prawn, Macrobrachium rosenbergii (de Man), is an important commercial species with considerable export value, ideal for cultivation under low saline conditions and in freshwater zones (Kurup 1994). However, despite more than a decade of research on its larval production systems, vibriosis still hampers seed production resulting in high mortality rates. Among the different species of vibrios, Vibrio alginolyticus has been isolated frequently from diseased shrimp as the aetiological agent of vibriosis and has been described as a principal pathogen of both penaeids and nonpenaeids (Lightner 1988; Baticados, Cruz-Lacierda, de la Cruz, Duremdez-Fernandez, Gacutan, Lavilla- Pitogo & Lio-Po 1990; Mohney, Lightner & Bell 1994; Lee, Yu, Chen, Yang & Liu 1996). Vibrio fluvialis, V. alginolyticus, V. cholerae non-O1 (Fujioka & Greco 1984), Aeromonas liquifaciens and V. anguillarum (Colorni 1985) have been isolated from the larvae of M. rosenbergii. A profound relationship between the abundance of members of the family Vibrionaceae and larval mortality (Singh 1990) and the predominance of Vibrio in eggs, larvae and post-larvae of M. rosenbergii (Hameed, Rahaman, Alagan & Yoganandhan 2003) was reported. The present paper reports the isolation, characterization, pathogenicity and antibiotic sensitivity of V. alginolyticus associated with M. rosenbergii larvae during an occurrence of severe mass mortality at the ninth larval stage.
Resumo:
Chitosan is a biocompatible and biodegradable natural polymer with established antimicrobial properties against specific microorganisms. The present study demonstrates its antibacterial activity against 48 isolates of Vibrio species from prawn larval rearing systems. The antibacterial activity had a positive correlation with the concentration of chitosan. This work opens up avenues for using chitosan as a prophylactic biopolymer for protecting prawn larvae from vibriosis.
Resumo:
The effects of ambient nitrite concentrations on larval development of giant river prawn Macrobrachium rosenbergii were evaluated. The trials were conducted in two phases: phase 1, larvae from stages I through VIII and phase 2, larvae from stage VIII until post-larvae. In both phases larvae were kept in water with nitrite (NO2-N) concentrations of 0, 2, 4, 8 and 16 mg/L. Oxygen consumption was analyzed for larvae in stage II at nitrite concentrations of 0, 4, and 8 mg/L. Survival, weight gain, larval stage index and metamorphosis rate decreased linearly with increasing ambient nitrite concentration. However, there was no significant difference between larvae subjected to 0 and 2 mg/L NO2-N. In phase 1, there was total mortality at 16 mg/L NO2-N, while in phase 2 larval development stopped at stage X in this treatment. The oxygen consumption in stage II increased significantly at NO2-N concentration from 0 to 4 mg/L, but there was no difference between 4 and 8 mg/L NO2-N. In conclusion, increasing ambient nitrite up to 16 mg/L NO2-N delays larval development, reduces larval growth rate and causes mortality, whereas no significant effect occurs for levels below 2 mg/L NO2-N. However, the establishment of a general safe level of nitrite to M rosenbergii hatchery may be difficult due to the great variability in larvae individual sensitivity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effect of nitrate concentration on giant river prawn, Macrobrachium rosenbergii, larvae was investigated. Survival rate, weight gain, and larval development were evaluated for different concentrations of nitrate in three experiments. The experiments were divided i n to two phases. In the first phase, larvae from stages I through VIII were analysed, while in the second phase larvae from stage VIII through post-larvae metamorphosis were analysed. Oxygen consumption was also determined for zoea I, II, and VIII exposed to 0, 700, and 1,000 mg/L of nitrate-N. No effect was observed for concentrations up to 180 mg/L NO3-N (experiments I and II), and nitrate levels as 1,000 mg/L NO3-N did not affect survival in the first phase of the third experiment. On the other hand, larval stage index (LSI) and weight gain decreased as nitrate-N concentration increased from 0 to 1,000 mg/L. In the second phase, survival and metamorphosis rate decreased as nitrate concentration increased, according to a linear model. The effect of nitrate levels on weight gain followed a curvilinear pattern. Larval respiration decreased in the water where nitrate was added, but only during stage II. The results demonstrated that nitrate presents extremely low toxicity for giant river prawn larvae, and data were related to the levels of nitrate that usually occur in larviculture systems also discussed. Therefore, nitrate is not a limiting factor for giant river prawn larviculture. © 2003 by The Haworth Press, Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The functional response between ingestion rate and food concentration was determined for each larval stage of Macrobrachium rosenbergii. Artemia franciscana nauplii were supplied at 2,4, 6, 8, 10 and 12 per milliliter. The nauplii were counted by sight using a Pasteur pipette and transferred to Petri dishes containing 40 ml of brackish water (12 parts per thousand) lying on the top of black plastic. One larva at each stage was individually placed into each Petri dish containing different food density. After 24 h, each larva was removed from the Petri dish and the leftover nauplii were counted. The amount consumed was determined by the difference between the initial and final number of nauplii. Ingestion rate (I) increased as food density (P) increased and was defined by the model I=I-m(1-e(-kP)). The results suggest four levels of ingestion during larval development. The first level includes stages II, III and IV, with average maximum consumption of about 40 nauplii/day; the second level includes stages V and VI, with consumption of approximately 55 nauplii/day; the third level includes stages VII and VIII, with consumption of 80-100 nauplii/day. The fourth level includes stages IX, X and XI, in which the high values for maximum ingestion (Im) exceed the load capacity of the medium. The low values for constant k (that may correspond to the adaptability of the food to prey characteristics, such as, size, mobility, etc.) obtained for stages IX, X and XI indicated that Artemia is not an adequate prey and there is necessity of a supplementary diet. The best relationship between predator and prey seemed to occur during stage IV Results obtained in the present work may subsidize future researches and serve as a guideline for practical considerations of feeding rates. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The functional response between ingestion rate and food concentration was determined for each larval stage of Macrobrachium rosenbergii. Artemia franciscana nauplii were supplied at 2,4, 6, 8, 10 and 12 per milliliter. The nauplii were counted by sight using a Pasteur pipette and transferred to Petri dishes containing 40 ml of brackish water (12 parts per thousand) lying on the top of black plastic. One larva at each stage was individually placed into each Petri dish containing different food density. After 24 h, each larva was removed from the Petri dish and the leftover nauplii were counted. The amount consumed was determined by the difference between the initial and final number of nauplii. Ingestion rate (I) increased as food density (P) increased and was defined by the model I=I-m(1-e(-kP)). The results suggest four levels of ingestion during larval development. The first level includes stages II, III and IV, with average maximum consumption of about 40 nauplii/day; the second level includes stages V and VI, with consumption of approximately 55 nauplii/day; the third level includes stages VII and VIII, with consumption of 80-100 nauplii/day. The fourth level includes stages IX, X and XI, in which the high values for maximum ingestion (Im) exceed the load capacity of the medium. The low values for constant k (that may correspond to the adaptability of the food to prey characteristics, such as, size, mobility, etc.) obtained for stages IX, X and XI indicated that Artemia is not an adequate prey and there is necessity of a supplementary diet. The best relationship between predator and prey seemed to occur during stage IV Results obtained in the present work may subsidize future researches and serve as a guideline for practical considerations of feeding rates. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Two sets of experiments were conducted to determine the dietary cholesterol requirement of larvae and postlarvae 1-10 of Penaeus indicus. Seven approximately isocaloric and isonitrogenous purified experimental diets were tried with graded levels of cholesterol ranging from 0 to 4%. The control feed for larvae and postlarvae 1-10 were phytoplankton and compounded feed NPCL-17, developed by CMFRI, Cochin respectively. Result of these experiments indicates that cholesterol is an essential nutrient in the diet of larvae and postlarvae 1-10. Survival and growth of larvae and postlarvae 1-10 were greatly affected by cholesterol deficiency in the diet. The optimal cholesterol requirement for larvae appeared to be 0.5% of the diet, while it was higher for postlarvae where inclusion of cholesterol at a level of 2% in the diet gave higher growth.