955 resultados para présentation croisée par CMH I
Resumo:
Il existe plusieurs défis au développement d’une thérapie visant à stimuler l’immunité cellulaire. Dans la prévention contre certains virus et en immunothérapie du cancer, l’induction de lymphocytes T spécifiques est cependant primordiale. Dans la première partie de l’étude, nous avons porté notre attention sur la compréhension de la présentation croisée par le complexe majeur d’histocompatibilité de classe I (CMH I) médiée par des particules pseudo-virales (VLP) composées de la protéine de surface de potexvirus à laquelle nous avons ajouté un épitope de la protéine M1 du virus de l’influenza ou un épitope de la protéine gp100 du mélanome. Cette VLP se caractérise par sa capacité à stimuler, sans l’aide d’adjuvant, le système immunitaire et de présenter de façon croisée l’épitope inséré dans sa protéine de surface et ce, indépendamment de l’activité du protéasome. Nous avons, tout d’abord, comparé les propriétés de présentation antigénique croisée des VLP formées du virus de la mosaïque de la malva (MaMV) à celles des VLP du virus de la mosaïque de la papaye (PapMV). Les résultats confirment que ces propriétés sont partagées par plusieurs membres de la famille des potexvirus malgré des divergences de séquences (Hanafi et al. Vaccine 2010). De plus, nous avons procédé à des expériences pour préciser le mécanisme menant à la présentation de l’épitope inséré dans les VLP de PapMV. Les résultats nous confirment une voie vacuolaire dépendante de l’activité de la cathepsine S et de l’acidification des lysosomes pour l’apprêtement antigénique. L’induction de l’autophagie par les VLP semble également nécessaire à la présentation croisée par les VLP de PapMV. Nous avons donc établi un nouveau mécanisme de présentation croisée vacuolaire dépendant de l’autophagie (Hanafi et al. soumis Autophagy). En second lieu, en immunothérapie du cancer, il est aussi important de contrôler les mécanismes d’évasion immunitaire mis en branle par la tumeur. Nous avons spécifiquement étudié l’enzyme immunosuppressive indoleamine 2,3-dioxygénase (IDO) (revue de la littérature dans les tumeurs humaines; Hanafi et al. Clin. Can. Res 2011) et son inhibition dans les cellules tumorales. Pour ce faire, nous avons tenté d’inhiber son expression par la fludarabine, agent chimiothérapeutique précédemment étudié pour son activité inhibitrice de l’activation de STAT1 (signal transducers and activators of transcription 1). Étonnamment, nos résultats ont montré l’inhibition d’IDO dans les cellules tumorales par la fludarabine, indépendamment de l’inhibition de la phosphorylation de STAT1. Nous avons démontré que le mécanisme d’action dépendait plutôt de l’induction de la dégradation d’IDO par le protéasome (Hanafi et al. PlosOne 2014). Les travaux présentés dans cette thèse ont donc portés autant sur la compréhension d’une nouvelle plateforme de vaccination pouvant médier l’activation de lymphocytes T CD8+ cytotoxiques et sur le contrôle d’une immunosuppression établie par les cellules tumorales pour évader au système immunitaire. Ces deux grandes stratégies sont à considérer en immunothérapie du cancer et la combinaison avec d’autres thérapies déjà existantes pourra permettre une meilleure réponse clinique.
Resumo:
La présentation antigénique par le complexe majeur d’histocompatibilité (MHC) I est un processus ubiquitaire permettant la présentation de protéines endogènes qui reflètent l'état de la cellule à la surface cellulaire aux lymphocytes T CD8+ dans le contexte de la surveillance et la réponse immunitaires. Ainsi, l'expression des molécules du MHC I classiques est induite en réponse aux stimuli inflammatoires afin de favoriser la reconnaissance immunitaire et l'élimination des pathogènes. HFE est une molécule du MHC Ib non-classique qui sert de régulateur négatif de l'absorption du fer. HFE est associé au développement de l'hémochromatose héréditaire (HH), maladie associée au métabolisme du fer mais souvent accompagnée de défauts immunitaires. Ainsi, nous avons en premier lieu étudié l'impact de HFE sur la présentation antigénique par MHC I, afin d'expliquer en partie les défauts immunitaires liés à l'HH associée à HFEC282Y. Puis, compte tenu de l'impact de l'inflammation sur l'expression des molécules du MHC I classiques, nous avons étudié la régulation de l'expression de HFE en réponse aux stimuli inflammatoires induits par les cellules du sang périphérique mononucléées (PBMC). Nous avons mis au point un système d’expression antigénique dans lequel nous contrôlons l’expression de MHC I, de HFE et d’un antigène pour lequel nous avons généré des lymphocytes T CD8+ spécifiques. Nos résultats démontrent que la forme sauvage de HFE (HFEWT), contrairement à sa forme mutée (HFEC282Y), inhibe la reconnaissance de complexes MHC I/peptide (pMHC). Nous avons également démontré que l'inhibition de la reconnaissance est maintenue, indépendamment des niveaux d'expression de MHC I à la surface, d'une compétition pour la β2-microglobuline, de la capacité de HFE d'interagir avec le récepteur de la transferrine, de l'origine de l'antigène ou de l'affinité de celui-ci. Par ailleurs, nous avons identifié les domaines α1-2 de HFEWT comme étant responsables de l'inhibition de la reconnaissance antigénique. Par contre, la reconnaissance de peptides chargés de manière externe sur les molécules du MHC I présentes à la surface n'a démontré aucune inhibition en présence de HFEWT, suggérant que HFEWT pourrait affecter la reconnaissance en interférant avec le processus d'apprêtement antigénique intracellulaire. À l’inverse, nous avons souhaité déterminer si les lymphocytes T activés pouvaient influencer les niveaux d'expression de HFE. En termes de régulation de l'expression de HFE, nous avons établi que HFE est exprimé dans les tissus sains chez l'humain et induit chez les lignées de cancers du colon, du sein, du poumon, du rein et du mélanome. Par ailleurs, en co-cultivant des lymphocytes T activés avec ces lignées tumorales, nous avons démontré que l'expression de HFE est fortement inhibée dans toutes ces lignées tumorales lorsqu'exposées à des lymphocytes T activés. Finalement, la modulation de l'expression de HFE est indépendante du contact cellulaire et semble médiée en partie par le GM-CSF, l'IFN-γ et le TNF. En somme, ces résultats suggèrent que les lymphocytes T de l'hôte modulent l'expression de HFE dans le microenvironnement inflammatoire, ce qui pourrait promouvoir la reconnaissance des antigènes présentés sur les molécules du MHC I présentées aux lymphocytes T CD8+ antigène-spécifiques. De plus, ces études soulèvent la possibilité d'un nouveau rôle physiologique de HFEWT dans la voie de présentation antigénique par MHC I, qui pourrait moduler l'immunogénicité des antigènes et la réponse immunitaire cellulaire chez l'hôte.
Resumo:
Le contrôle immunitaire des infections virales est effectué, en grande partie, par les lymphocytes T CD8+ cytotoxiques. Pour y parvenir, les lymphocytes T CD8+ doivent être en mesure de reconnaître les cellules infectées et de les éliminer. Cette reconnaissance des cellules infectées s’effectue par l’interaction du récepteur T (TCR) des lymphocytes T CD8+ et des peptides viraux associés au complexe majeur d’histocompatibilité (CMH) de classe I à la surface des cellules hôtes. Cette interaction constitue l’élément déclencheur permettant l’élimination de la cellule infectée. On comprend donc toute l’importance des mécanismes cellulaires menant à la génération des peptides antigéniques à partir des protéines virales produites au cours d’une infection. La vision traditionnelle de cet apprêtement protéique menant à la présentation d’antigènes par les molécules du CMH propose deux voies cataboliques distinctes. En effet, il est largement admis que les antigènes endogènes sont apprêtés par la voie dite ‘‘classique’’ de présentation antigénique par les CMH de classe I. Cette voie implique la dégradation des antigènes intracellulaires par le protéasome dans le cytoplasme, le transport des peptides résultant de cette dégradation à l’intérieur du réticulum endoplasmique, leur chargement sur les molécules du CMH de classe I et finalement le transport des complexes peptide-CMH à la surface de la cellule où ils pourront activer les lymphocytes T CD8+. Dans la seconde voie impliquant des antigènes exogènes, le dogme veut que ceux-ci soient apprêtés par les protéases du compartiment endovacuolaire. Les peptides ainsi générés sont directement chargés sur les molécules de CMH de classe II à l’intérieur de ce compartiment. Par la suite, des mécanismes de recyclage vésiculaire assurent le transport des complexes peptide-CMH de classe II à la surface de la cellule afin de stimuler les lymphocytes T CD4+. Cependant, cette stricte ségrégation des voies d’apprêtement antigénique a été durement éprouvée par la capacité des cellules présentatrices d’antigènes à effectuer l’apprêtement d’antigènes exogènes et permettre leur présentation sur des molécules de CMH de classe I. De plus, l’identification récente de peptides d’origine intracellulaire associés à des molécules de CMH de classe II a clairement indiqué la présence d’interactions entre les deux voies d’apprêtement antigénique permettant de transgresser le dogme préalablement établi. L’objectif du travail présenté ici était de caractériser les voies d’apprêtement antigénique menant à la présentation d’antigènes viraux par les molécules du CMH de classe I lors d’une infection par le virus de l’Herpès simplex de type I (HSV-1). Dans les résultats rapportés ici, nous décrivons une nouvelle voie d’apprêtement antigénique résultant de la formation d’autophagosomes dans les cellules infectées. Cette nouvelle voie permet le transfert d’antigènes viraux vers un compartiment vacuolaire dégradatif dans la phase tardive de l’infection par le virus HSV-1. Cette mise en branle d’une seconde voie d’apprêtement antigénique permet d’augmenter le niveau de présentation de la glycoprotéine B (gB) virale utilisée comme modèle dans cette étude. De plus, nos résultats décrivent la formation d’une nouvelle forme d’autophagosomes dérivés de l’enveloppe nucléaire en réponse à l’infection par le virus HSV-1. Ces nouveaux autophagosomes permettent le transfert d’antigènes viraux vers un compartiment vacuolaire lytique, action également assurée par les autophagosomes dits classiques. Dans la deuxième partie du travail présenté ici, nous utilisons l’infection par le virus HSV-1 et la production de la gB qui en résulte pour étudier le trafic membranaire permettant le transfert de la gB vers un compartiment vacuolaire dégradatif. Nos résultats mettent en valeur l’importance du réticulum endoplasmique, et des compartiments autophagiques qui en dérivent, dans ces mécanismes de transfert antigénique permettant d’amplifier la présentation antigénique de la protéine virale gB sur des CMH de classe I via une voie vacuolaire. L’ensemble de nos résultats démontrent également une étroite collaboration entre la voie classique de présentation antigénique par les CMH de classe I et la voie vacuolaire soulignant, encore une fois, la présence d’interaction entre les deux voies.
Resumo:
Les molécules classiques du CMH de classe II sont responsables de la présentation de peptides exogènes par les cellules présentatrices d’antigène aux lymphocytes T CD4+. Cette présentation antigénique est essentielle à l’établissement d’une réponse immunitaire adaptative. Cependant, la reconnaissance d’auto-antigènes ainsi que l’élimination des cellules du Soi sont des problèmes à l’origine de nombreuses maladies auto-immunes. Notamment, le diabète et la sclérose en plaque. D’éventuels traitements de ces maladies pourraient impliquer la manipulation de la présentation antigénique chez les cellules dont la reconnaissance et l’élimination engendrent ces maladies. Il est donc primordial d’approfondir nos connaissances en ce qui concerne les mécanismes de régulation de la présentation antigénique. La présentation antigénique est régulée tant au niveau transcriptionnel que post-traductionnel. Au niveau post-traductionnel, diverses cytokines affectent le processus. Parmi celles-ci, l’IL-10, une cytokine anti-inflammatoire, cause une rétention intracellulaire des molécules du CMH II. Son mécanisme d’action consiste en l’ubiquitination de la queue cytoplasmique de la chaîne bêta des molécules de CMH II. Cette modification protéique est effectuée par MARCH1, une E3 ubiquitine ligase dont l’expression est restreinte aux organes lymphoïdes secondaires. Jusqu’à tout récemment, il y avait très peu de connaissance concernant la structure et les cibles de MARCH1. Considérant son impact majeur sur la présentation antigénique, nous nous sommes intéressé à la structure-fonction de cette molécule afin de mieux caractériser sa régulation ainsi que les diverses conditions nécessaires à son fonctionnement. Dans un premier article, nous avons étudié la régulation de l’expression de MARCH1 au niveau protéique. Nos résultats ont révélé l’autorégulation de la molécule par formation de dimères et son autoubiquitination. Nous avons également démontré l’importance des domaines transmembranaires de MARCH1 dans la formation de dimères et l’interaction avec le CMH II. Dans un second article, nous avons investigué l’importance de la localisation de MARCH1 pour sa fonction. Les résultats obtenus montrent la fonctionnalité des motifs de localisation de la portion C-terminale de MARCH1 ainsi que la présence d’autres éléments de localisation dans la portion N-terminale de la protéine. Les nombreux mutants utilisés pour ce projet nous ont permis d’identifier un motif ‘‘VQNC’’, situé dans la portion cytoplasmique C-terminale de MARCH1, dont la valine est requise au fonctionnement optimal de la molécule. En effet, la mutation de la valine engendre une diminution de la fonction de la molécule et des expériences de BRET ont démontré une modification de l’orientation spatiale des queues cytoplasmiques. De plus, une recherche d’homologie de séquence a révélé la présence de ce même motif dans d’autres ubiquitines ligases, dont Parkin. Parkin est fortement exprimée dans le cerveau et agirait, entre autre, sur la dégradation des agrégats protéiques. La dysfonction de Parkin cause l’accumulation de ces agrégats, nommés corps de Lewy, qui entraînent des déficiences au niveau du fonctionnement neural observé chez les patients atteints de la maladie de Parkinson. La valine comprise dans le motif ‘’VQNC’’ a d’ailleurs été identifiée comme étant mutée au sein d’une famille où cette maladie est génétiquement transmise. Nous croyons que l’importance de ce motif ne se restreint pas à MARCH1, mais serait généralisée à d’autres E3 ligases. Ce projet de recherche a permis de caractériser des mécanismes de régulation de MARCH1 ainsi que de découvrir divers éléments structuraux requis à sa fonction. Nos travaux ont permis de mieux comprendre les mécanismes de contrôle de la présentation antigénique par les molécules de CMH II.
Resumo:
Le système ubiquitine-protéasome est le principal mécanisme par lequel les protéines intracellulaires sont dégradées. Le protéasome dit constitutif (PC) est donc essentiel à l’homéostasie mais aussi à la régulation de la majorité des processus cellulaires importants. La découverte d’un deuxième type de protéasome, appelé immunoprotéasome (IP), soulève toutefois de nouvelles questions. Pourquoi existe-t-il plus d’un type de protéasome ? L’IP a-t-il des rôles redondants ou complémentaires avec le PC ? L’IP étant présent principalement dans les cellules immunitaires ou stimulées par des cytokines, plusieurs groupes ont tenté de définir son rôle dans la réponse immunitaire. Or, l’implication de son homologue constitutif dans un éventail de processus non spécifiquement immunitaires nous laisse croire que l’IP pourrait lui aussi avoir un impact beaucoup plus large. L’objectif de cette thèse était donc de caractériser certains rôles cellulaires de l’IP dans les cellules dendritiques. Nous avons d’abord étudié l’impact global de l’IP sur la présentation antigénique de classe I. Ce faisant, nous avons pu déterminer ses deux contributions principales, soit l’augmentation drastique du nombre et de la diversité des peptides présentés sur les complexes majeurs d’histocompatibilité de classe I. Les différences de clivage entre le PC et l’IP pourraient expliquer en partie cette diversité du répertoire peptidique, notamment par l’affinité apparente de l’IP pour les régions protéiques non structurées. Dans un deuxième temps, nous avons dévoilé un nouveau rôle de l’IP sur un processus dépassant le cadre immunitaire : la transcription. Nous avons découvert que l’IP modifie l’abondance des ARNm en agissant principalement au niveau de leur synthèse. L’impact de l’IP sur le transcriptome est majeur et serait dû en partie à une dégradation différente de facteurs de transcription des familles IRF, STAT et NF-kB. Les cellules dendritiques IP-déficientes activent moins efficacement les lymphocytes T CD8+ et nous croyons que cette défaillance est causée (du moins en partie) par la perturbation transcriptomique provoquée par l’absence d’IP. Il importe donc de comprendre les différents rôles moléculaires de l’IP afin de mieux définir sa contribution globale au fonctionnement de la cellule et comprendre l’avantage évolutif, au niveau de l’organisme, procuré par une telle plasticité du système ubiquitine-protéasome.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Les molécules du complexe majeur d'histocompatibilité de classe II (CMH II) sont exprimées exclusivement à la surface des cellules présentatrices d'antigènes et servent à stimuler les cellules CD4+ initiant une réponse immunitaire. Le chargement peptidique sur HLA-DR se produit dans les endosomes tardifs et les lysosomes sous l'action de HLA-DM. Cette molécule de classe II non-classique enlève les fragments peptidiques de la chaîne invariante (Ii) restés associés aux molécules de classe II (CLIP) et édite leur répertoire d'antigènes présentés. En utilisant une forme mutante de HLA-DM (HLA-DMy) qui s'accumule à la surface plasmique, nous avons observé que HLA-DMy augmente les chargements de peptides exogènes et aussi la réponse des cellules T en comparaison avec HLA-DM sauvage. Il a été démontré que des molécules chimiques, comme le n-propanol, pouvait avoir le même effet que HLA-DM en remplaçant les peptides associés aux molécules de classe II de la surface cellulaire. De plus, HLA-DMy et le n-propanol ont présenté un effet additif sur la présentation de peptides exogènes. Certaines protéines de la voie endocytique, comme HLA-DR, HLA-DM, HLA-DO et Ii sont ciblés aux compartiments multivésiculaires (MVB) et peuvent être ciblées aux exosomes. Suite à une fusion entre les MVB et la membrane plasmique, les exosomes sont relâchés dans le milieu extracellulaire. Nous avons déterminé que le motif tyrosine de HLA-DMβ et son interaction avec HLA-DR n'affectaient pas le ciblage aux exosomes, sauf la molécule HLA-DO. Cette étude nous a permis de démontrer que HLA-DMy augmente la quantité de peptides exogènes chargés sur les CPA et que HLA-DM et HLA-DMy sont incorporés dans les exosomes.
Resumo:
La chaîne invariante forme un complexe nonamérique avec les molécules classiques du CMH de classe II. HLA-DM et HLA-DO, des molécules non-classiques de classe II, sont aussi impliquées dans la présentation des peptides antigéniques aux lymphocytes T. Ces molécules chaperones de la présentation antigénique modulent la capacité d’une cellule à présenter des antigènes par les moloécules classiques du CMH de classe II. La régulation transcriptionnelle des molécules chaperones, tout comme celle des autres molécules du CMH de classe II, est assurée par le transactivateur CIITA. La molécule HLA-DR peut être régulée négativement de manière post-traductionnelle par ubiquitination grâce à l’enzyme E3 ubiquitine ligase MARCH1. Celle-ci est induite par l’interleukine-10 dans les monocytes. L’objectif de ce projet était de déterminer si l’ubiquitination par MARCH1 peut aussi réguler l’expression des molécules chaperones de la présentation antigénique. Les expériences furent réalisées dans le contexte de co-transfections en cellules HEK293T. L’expression des molécules fut évaluée par immunomarquages et cytométrie de flux. Il a été montré que l’isoforme p33 de la chaîne invariante est régulé négativement en présence de MARCH1 à partir de la surface cellulaire, causant ainsi sa dégradation. Tel que démontré par l’utilisation d’un mutant dépourvu de queue cytoplasmique, cette dernière région n’est pas indispensable à ce phénomène. Une hypothèse est qu’une molécule non-identifiée, associée à Ii, serait ubiquitinée par MARCH1, l’entraînant dans sa régulation négative. Il fut déterminer que cette molécule n’était pas CXCR2, un récepteur pouvant être impliqué, avec la chaîne invariante et CD44, en tant que récepteur de MIF (Macrophage Inhibitory Factor). Il fut aussi montré que HLA-DO peut être ciblé par MARCH1 mais ceci ne semble pas être un phénomène dominant; l’expression des complexes DO/DM n’étant pas affectée bien qu’ils entrent en interaction avec MARCH1. L’expression de HLA-DM n’est pas affectée par MARCH1. Il n’a toutefois pas été déterminé hors de tout doute si MARCH1 peut modifier DM; des résultats obtenus avec une queue cytoplasmique de DM possédant une lysine laissant suggérer qu’il est possible que MARCH1 interagisse avec DM. Dans l’ensemble, les travaux démontrent que l’ubiquitination par MARCH1 joue un rôle dans la régulation post-transcriptionnelle de la chaîne invariante p33 mais pas HLA-DO et HLA-DM.
Resumo:
Les méthodes de vaccination actuelles contre l’influenza, axées sur la réponse à anticorps dirigée contre des antigènes hautement variables, nécessitent la production d’un vaccin pour chaque nouvelle souche. Le défi est maintenant de stimuler simultanément une réponse cellulaire pan-spécifique ciblant des antigènes conservés du virus, tel que la protéine de la matrice (M1) ou la nucléoprotéine (NP). Or, la présentation antigénique de ces protéines est peu définie chez l’humain. Nous avons analysé la présentation endogène par les complexes majeurs d’histocompatibilité de classes (CMH)-I et -II de M1 et de NP. Ainsi, les protéines M1 et NP ont été exprimées dans des cellules présentatrices d’antigènes (CPAs). Notamment, des épitopes de M1 et de NP endogènes peuvent être présentées par CMH-I et -II, ce qui résulte en une activation respectivement de lymphocytes T CD8+ et CD4+ précédemment isolés. Étant donné l’importance des lymphocytes T CD4+ dans la réponse cellulaire, nous avons cloné M1 ou NP en fusion avec des séquences de la protéine gp100 permettant la mobilisation vers les compartiments du CMH-II sans affecter la présentation par CMH-I. Des CPAs exprimant de façon endogène ces constructions modifiées ou sauvages ont ensuite été utilisées pour stimuler in vitro des lymphocytes T humains dont la qualité a été évaluée selon la production de cytokines et la présence de molécules de surface (ELISA ou marquage de cytokines intracellulaire). Nous avons observé une expansion de lymphocytes T CD8+ et CD4+ effecteurs spécifiques sécrétant diverses cytokines pro-inflammatoires (IFN-γ, TNF, MIP-1β) dans des proportions comparables avec une présentation par CMH-II basale ou améliorée. Cette qualité indépendante du niveau de présentation endogène par CMH-II de M1 et de NP des lymphocytes T CD4+ et CD8+ suggère que cette présentation est suffisante à court terme. En outre, la présentation endogène de M1 et NP a permis de stimuler des lymphocytes T spécifiques à des épitopes conservés du virus, tel qu’identifié à l’aide une méthode d’identification originale basée sur des segments d’ARNm, « mRNA PCR-based epitope chase (mPEC) ». Ensemble, ces nouvelles connaissances sur la présentation antigénique de M1 et de NP pourraient servir à établir de nouvelles stratégies vaccinales pan-spécifiques contre l’influenza.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.