879 resultados para power line detection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial information captured from optical remote sensors on board unmanned aerial vehicles (UAVs) has great potential in automatic surveillance of electrical infrastructure. For an automatic vision-based power line inspection system, detecting power lines from a cluttered background is one of the most important and challenging tasks. In this paper, a novel method is proposed, specifically for power line detection from aerial images. A pulse coupled neural filter is developed to remove background noise and generate an edge map prior to the Hough transform being employed to detect straight lines. An improved Hough transform is used by performing knowledge-based line clustering in Hough space to refine the detection results. The experiment on real image data captured from a UAV platform demonstrates that the proposed approach is effective for automatic power line detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a fast power line detection and localisation algorithm as well as propose a high-level guidance architecture for active vision-based Unmanned Aerial Vehicle (UAV) guidance. The detection stage is based on steerable filters for edge ridge detection, followed by a line fitting algorithm to refine candidate power lines in images. The guidance architecture assumes an UAV with an onboard Gimbal camera. We first control the position of the Gimbal such that the power line is in the field of view of the camera. Then its pose is used to generate the appropriate control commands such that the aircraft moves and flies above the lines. We present initial experimental results for the detection stage which shows that the proposed algorithm outperforms two state-of-the-art line detection algorithms for power line detection from aerial imagery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light Detection and Ranging (LIDAR) has great potential to assist vegetation management in power line corridors by providing more accurate geometric information of the power line assets and vegetation along the corridors. However, the development of algorithms for the automatic processing of LIDAR point cloud data, in particular for feature extraction and classification of raw point cloud data, is in still in its infancy. In this paper, we take advantage of LIDAR intensity and try to classify ground and non-ground points by statistically analyzing the skewness and kurtosis of the intensity data. Moreover, the Hough transform is employed to detected power lines from the filtered object points. The experimental results show the effectiveness of our methods and indicate that better results were obtained by using LIDAR intensity data than elevation data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comprehensive discussion of vegetation management approaches in power line corridors based on aerial remote sensing techniques. We address three issues 1) strategies for risk management in power line corridors, 2) selection of suitable platforms and sensor suite for data collection and 3) the progress in automated data processing techniques for vegetation management. We present initial results from a series of experiments and, challenges and lessons learnt from our project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following paper presents an evaluation of airborne sensors for use in vegetation management in powerline corridors. Three integral stages in the management process are addressed including, the detection of trees, relative positioning with respect to the nearest powerline and vegetation height estimation. Image data, including multi-spectral and high resolution, are analyzed along with LiDAR data captured from fixed wing aircraft. Ground truth data is then used to establish the accuracy and reliability of each sensor thus providing a quantitative comparison of sensor options. Tree detection was achieved through crown delineation using a Pulse-Coupled Neural Network (PCNN) and morphologic reconstruction applied to multi-spectral imagery. Through testing it was shown to achieve a detection rate of 96%, while the accuracy in segmenting groups of trees and single trees correctly was shown to be 75%. Relative positioning using LiDAR achieved a RMSE of 1.4m and 2.1m for cross track distance and along track position respectively, while Direct Georeferencing achieved RMSE of 3.1m in both instances. The estimation of pole and tree heights measured with LiDAR had a RMSE of 0.4m and 0.9m respectively, while Stereo Matching achieved 1.5m and 2.9m. Overall a small number of poles were missed with detection rates of 98% and 95% for LiDAR and Stereo Matching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a real-time vision based power line extraction solution is investigated for active UAV guidance. The line extraction algorithm starts from ridge points detected by steerable filters. A collinear line segments fitting algorithm is followed up by considering global and local information together with multiple collinear measurements. GPU boosted algorithm implementation is also investigated in the experiment. The experimental result shows that the proposed algorithm outperforms two baseline line detection algorithms and is able to fitting long collinear line segments. The low computational cost of the algorithm make suitable for real-time applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents novel vision based control solutions that enable fixed-wing Unmanned Aerial Vehicles to perform tasks of inspection over infrastructure including power lines, pipe lines and roads. This is achieved through the development of techniques that combine visual servoing with alternate manoeuvres that assist the UAV in both following and observing the feature from a downward facing camera. Control designs are developed through techniques of Image Based Visual Servoing to utilise sideslip through Skid-to-Turn and Forward-Slip manoeuvres. This allows the UAV to simultaneously track and collect data over the length of infrastructure, including straight segments and the transition where these meet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corona discharge is responsible for the small ions found near overhead power lines, and these are capable of modifying the ambient electrical environment such as the dc electric field at ground level (Fews, Wilding et al. 2002). Once produced, small ions quickly attach to aerosol particles in the air, producing ‘large ions’ which are roughly 1 nm to 1 µm in diameter. However, very few studies have reported measurements of ions produced by power lines and its impact on particle charge concentrations. In this present study, the measurements were conducted as a function of normal downwind distance from a 275kV power line for investigating the effect of corona ions on air ions, aerosol particle charge concentration and dc e-filed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power line inspection is a vital function for electricity supply companies but it involves labor-intensive and expensive procedures which are tedious and error-prone for humans to perform. A possible solution is to use an unmanned aerial vehicle (UAV) equipped with video surveillance equipment to perform the inspection. This paper considers how a small, electrically driven rotorcraft conceived for this application could be controlled by visually tracking the overhead supply lines. A dynamic model for a ducted-fan rotorcraft is presented and used to control the action of an Air Vehicle Simulator (AVS), consisting of a cable-array robot. Results show how visual data can be used to determine, and hence regulate in closed loop, the simulated vehicle’s position relative to the overhead lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent years, there has been a trend to run metallic pipelines carrying petroleum products and high voltage AC power lines parallel to each other in a relatively narrow strip of land. Due to this sharing of the right-of-way, verhead AC power line electric field may induce voltages on the metallic pipelines running in close vicinity leading to serious adverse effects. In this paper, the induced voltages on metallic pipelines running in close vicinity of high voltage power transmission lines have been computed. Before computing the induced voltages, an optimum configuration of the phase conductors based on the lowest conductor surface gradient and field under transmission line has been arrived at. This paper reports the conductor surface field gradients calculated for the various configurations. Also the electric fields under transmission line, for single circuit and double circuit (various phase arrangements) have been analyzed. Based on the above results, an optimum configuration giving the lowest field under the power line as well as the lowest conductor surface gradient has been arrived at and for this configuration, induced voltage on the pipeline has been computed using the Charge Simulation Method (CSM). For comparison, induced voltages on the pipeline has been computed for the various other phase configurations also.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal oxide varistors (MOV) are popularly used to protect offline electronic equipment against power line transients. The offline switched mode power supplies (SMPS) use power line filters and MOVs in the front-end. The power line filter is used to reduce the conducted noise emission into the power line and the MOVs connected before this line filter and the MOVs connected before this line filter to clamp line transients to safer levels thereby protecting the SMPS. Because of the presence of 'X' capacitors at the input of line filter the MOV clamping voltage is increased. This paper presents one such case and gives theoretical and experimental results. An approximate method to predetermine the magnitude of such clamping voltages is also presented.