849 resultados para power consumption
Resumo:
In this paper characteristic of a DBD (Dielectric Barrier Discharge) plasma lamp is investigated based on the lamp intensity and power consumption. A pulsed power supply with controllable parameters based on a push-pull converter is developed for lamp excitation at different voltage levels and repetition rate. The experimentations were conducted for 28 different operating points with the frequency range of 2 kHz to 15 Khz at output voltage levels of between 7.4 kV up to 13 kV. The obtained results show the feasibility of finding an optimum operation point due to nonlinear behaviour of the DBD lamp.
Resumo:
The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000 mu epsilon). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d(31), dielectric coefficient epsilon(33) and dissipation factor delta. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can vary with temperature. Recent experimental studies by physics researchers have looked at the effect of high electric field and temperature on piezoelectric properties. These properties are used together with an impedance based power consumption model. Results show that including the nonlinear variation of dielectric permittivity and dissipation factor with electric field is important. Temperature dependence of the dielectric constant also should be considered.
Resumo:
We investigate the effect of a prescribed tangential velocity on the drag force on a circular cylinder in a spanwise uniform cross flow. Using a combination of theoretical and numerical techniques we make an attempt at determining the optimal tangential velocity profiles which will reduce the drag force acting on the cylindrical body while minimizing the net power consumption characterized through a non-dimensional power loss coefficient (C-PL). A striking conclusion of our analysis is that the tangential velocity associated with the potential flow, which completely suppresses the drag force, is not optimal for both small and large, but finite Reynolds number. When inertial effects are negligible (R e << 1), theoretical analysis based on two-dimensional Oseen equations gives us the optimal tangential velocity profile which leads to energetically efficient drag reduction. Furthermore, in the limit of zero Reynolds number (Re -> 0), minimum power loss is achieved for a tangential velocity profile corresponding to a shear-free perfect slip boundary. At finite Re, results from numerical simulations indicate that perfect slip is not optimum and a further reduction in drag can be achieved for reduced power consumption. A gradual increase in the strength of a tangential velocity which involves only the first reflectionally symmetric mode leads to a monotonic reduction in drag and eventual thrust production. Simulations reveal the existence of an optimal strength for which the power consumption attains a minima. At a Reynolds number of 100, minimum value of the power loss coefficient (C-PL = 0.37) is obtained when the maximum in tangential surface velocity is about one and a half times the free stream uniform velocity corresponding to a percentage drag reduction of approximately 77 %; C-PL = 0.42 and 0.50 for perfect slip and potential flow cases, respectively. Our results suggest that potential flow tangential velocity enables energetically efficient propulsion at all Reynolds numbers but optimal drag reduction only for Re -> infinity. The two-dimensional strategy of reducing drag while minimizing net power consumption is shown to be effective in three dimensions via numerical simulation of flow past an infinite circular cylinder at a Reynolds number of 300. Finally a strategy of reducing drag, suitable for practical implementation and amenable to experimental testing, through piecewise constant tangential velocities distributed along the cylinder periphery is proposed and analysed.
Resumo:
The concentration of Nitrogen Oxides (NOx) in engines which use biodiesel as fuel is higher compared to conventional diesel engine exhaust. In this paper, an attempt has been made to treat this exhaust using a combination of High frequency AC (HFAC) plasma and an industrial waste, Red Mud which shows proclivity towards Nitrogen dioxide (NO2) adsorption. The high frequency AC source in combination with the proposed compact double dielectric plasma reactors is relatively more efficient in converting Nitric Oxide (NO) to NO2. It has been shown that the plasma treated gas enhances the activity of red mud as an adsorbent/catalyst and about 60-72% NOx removal efficiency was observed at a specific energy of 250 J/L. The advantage in this method is the cost effectiveness and abundant availability of the waste red mud in the industry. Further, power estimation studies were carried out using Manley's equation for the two reactors employed in the experiment and a close agreement between experimental and predicted powers was observed. (C) 2015 The Authors. Published by Elsevier Ltd.
Resumo:
In this paper, micro gas sensor was fabricated using indium oxide nanowire for effective gas detection and monitoring system. Indium oxide nanowire was grown using thermal CVD, and their structural properties were examined by the SEM, XRD and TEM. The electric properties for microdropped indium oxide nanowire device were measured, and gas response characteristics were examined for CO gas. Sensors showed high sensitivity and stability for CO gas. And with below 20 mw power consumption, 5 ppm CO could be detected.
Resumo:
The noble gas sensor using multiple ZnO nanorods was fabricated with CMOS compatible process and sol-gel growth method on selective area and gas response characteristics to NO2 gas of the sensor device were investigated. We confirmed the sensors had high sensitive response denoted by the sensitivity of several tens for NO2 gas sensing and also showed pretty low power consumption close to 20 mW even though the recovery of resistance come up to almost the initial value.
Resumo:
A thermo-optic Mach-Zehnder (MZ) variable optical attenuator based on silicon waveguides with a large cross section was designed and fabricated on silicon-on-insulator (SOI) wafer. Multimode interferometers were used as power splitters and combiners in the MZ structure. In order to achieve a smooth interface, anisotropic chemical etching of silicon was used to fabricate the waveguides. Isolating grooves were introduced to reduce power consumption and device length. The device has a low power consumption of 210 mW and a response time of 50 mus. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel silicon-on-insulator thermo-optic variable optical attenuator with isolated grooves based on a multimode interference coupler principle is fabricated by the inductive coupled plasma etching technology. The maximum fibre-to-fibre insertion loss is lower than 2.2 dB, the dynamic attenuation range is from 0 to 30 dB in the wavelength range 1500-1600 nm, and the maximum power consumption is only 140 mW. The response frequency of the fabricated variable optical attenuator is about 30 kHz. Compared to the variable optical attenuator without isolated grooves, the maximum power consumption decreases more than 220 mW, and the response frequency rises are more than 20 kHz.
Resumo:
A low power consumption 2 x 2 thermo-optic switch with fast response was fabricated on silicon-on-insulator by anisotropy chemical etching. Blocking trenches were etched on both sides of the phase-shifting arms to shorten device length and reduce power consumption. Thin top cladding layer was grown to reduce power consumption and switching time. The device showed good characteristics, including a low switching power of 145 mW and a fast switching speed of 8 +/- 1 mus, respectively. Two-dimensional finite element method was applied to simulate temperature field in the phase-shifting arm instead of conventional one-dimensional method. According to the simulated result, a new two-dimensional index distribution of phase-shifting arm was determined. Consequently finite-difference beam propagation method was employed to simulate the light propagation in the switch, and calculate the power consumption as well as the switching speed. The experimental results were in good agreement with the theoretical estimations. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A SOI thenno-optic variable optical attenuator with U-grooves based on a multimode interference coupler principle is fabricated. The dynamic attenuation range is 0 to 29 dB; at the wavelength range between 1510 nm and 1610nm, and the maximum power consumption is only l30mW. Compared to the variable optical attenuator without U-groove, the maximum power consumption decreases more than 230mW
Resumo:
In this paper, the fabrication method of a new type of carbon monoxide gas sensor based on SnOx with low power consumption and its sensing characteristics have been reported. The electric conductance of this type of sensor evolves oscillation form regularly when the sensor is exposed to low level of CO gas. The oscillation amplitude is directly proportional to the concentration of CO gas over a wide range. The effects of relevant factors. such as. humidity, temperature and interference gases on the sensor properties were examined. The sensing oscillation response mechanism was also discussed.
Resumo:
The power consumption of wireless sensor networks (WSN) module is an important practical concern in building energy management (BEM) system deployments. A set of metrics are created to assess the power profiles of WSN in real world condition. The aim of this work is to understand and eventually eliminate the uncertainties in WSN power consumption during long term deployments and the compatibility with existing and emerging energy harvesting technologies. This paper investigates the key metrics in data processing, wireless data transmission, data sensing and duty cycle parameter to understand the system power profile from a practical deployment prospective. Based on the proposed analysis, the impacts of individual metric on power consumption in a typical BEM application are presented and the subsequent low power solutions are investigated.
Resumo:
In this paper the dependence of the power consumption of pneumatic conveyors upon conveyed materials, pipeline route and bore, and mode of flow has been examined. The findings are that, with different materials and modes of flow, not only is the amount of power consumed very different but it varies in different ways with pipe bore and routing. Additionally it has been found that, for any given conveying system, the choice of air mover also has a strong influence on the power requirement.