435 resultados para posttetanic potentiation
Resumo:
The electrosensory lateral line lobe (ELL) of the electric fish Apteronotus leptorhynchus is a layered medullary region receiving electroreceptor input that terminates on basal dendrites of interneurons and projection (pyramidal) cells. The molecular layer of the ELL contains two distinct glutamatergic feedback pathways that terminate on the proximal (ventral molecular layer, VML) and distal (dorsal molecular layer) apical dendrites of pyramidal cells. Western blot analysis with an antibody directed against mammalian Ca2+/calmodulin-dependent kinase 2, α subunit (CaMK2α) recognized a protein of identical size in the brain of A. leptorhynchus. Immunohistochemistry demonstrated that CaMK2 α expression in the ELL was restricted to fibers and terminals in the VML. Posttetanic potentiation (PTP) could be readily elicited in pyramidal cells by stimulation of either VML or DML in brain slices of the ELL. PTP in the VML was blocked by extracellular application of a CaMK2 antagonist (KN62) while intracellular application of KN62 or a CaMK2 inhibitory peptide had no effect, consistent with the presynaptic localization of CaMK2 α in VML. PTP in the dorsal molecular layer was not affected by extracellular application of KN62. Anti-Hebbian plasticity has also been demonstrated in the VML, but was not affected by KN62. These results demonstrate that, while PTP can occur independent of CaMK2, it is, in some synapses, dependent on this kinase.
Resumo:
Twitch potentiation and fatigue in skeletal muscle are two conditions in which force production is affected by the stimulation history. Twitch potentiation is the increase in the twitch active force observed after a tetanic contraction or during and following low-frequency stimulation. There is evidence that the mechanism responsible for potentiation is phosphorylation of the regulatory light chains of myosin, a Ca2+-dependent process. Fatigue is the force decrease observed after a period of repeated muscle stimulation. Fatigue has also been associated with a Ca2+-related mechanism: decreased peak Ca2+ concentration in the myoplasm is observed during fatigue. This decrease is probably due to an inhibition of Ca2+ release from the sarcoplasmic reticulum. Although potentiation and fatigue have opposing effects on force production in skeletal muscle, these two presumed mechanisms can coexist. When peak myoplasmic Ca2+ concentration is depressed, but myosin light chains are relatively phosphorylated, the force response can be attenuated, not different, or enhanced, relative to previous values. In circumstances where there is interaction between potentiation and fatigue, care must be taken in interpreting the contractile responses.
Resumo:
This thesis investigated the modulation of dynamic contractile function and energetics of work by posttetanic potentiation (PTP). Mechanical experiments were conducted in vitro using software-controlled protocols to stimulate/determine contractile function during ramp shortening, and muscles were frozen during parallel incubations for biochemical analysis. The central feature of this research was the comparison of fast hindlimb muscles from wildtype and skeletal myosin light chain kinase knockout (skMLCK-/-) mice that does not express the primary mechanism for PTP: myosin regulatory light chain (RLC) phosphorylation. In contrast to smooth/cardiac muscles where RLC phosphorylation is indispensable, its precise physiological role in skeletal muscle is unclear. It was initially determined that tetanic potentiation was shortening speed dependent, and this sensitivity of the PTP mechanism to muscle shortening extended the stimulation frequency domain over which PTP was manifest. Thus, the physiological utility of RLC phosphorylation to augment contractile function in vivo may be more extensive than previously considered. Subsequent experiments studied the contraction-type dependence for PTP and demonstrated that the enhancement of contractile function was dependent on force level. Surprisingly, in the absence of RLC phosphorylation, skMLCK-/- muscles exhibited significant concentric PTP; consequently, up to ~50% of the dynamic PTP response in wildtype muscle may be attributed to an alternate mechanism. When the interaction of PTP and the catchlike property (CLP) was examined, we determined that unlike the acute augmentation of peak force by the CLP, RLC phosphorylation produced a longer-lasting enhancement of force and work in the potentiated state. Nevertheless, despite the apparent interference between these mechanisms, both offer physiological utility and may be complementary in achieving optimal contractile function in vivo. Finally, when the energetic implications of PTP were explored, we determined that during a brief period of repetitive concentric activation, total work performed was ~60% greater in wildtype vs. skMLCK-/- muscles but there was no genotype difference in High-Energy Phosphate Consumption or Economy (i.e. HEPC: work). In summary, this thesis provides novel insight into the modulatory effects of PTP and RLC phosphorylation, and through the observation of alternative mechanisms for PTP we further develop our understanding of the history-dependence of fast skeletal muscle function.
Resumo:
Previous studies have shown that short-term sensitization of the Aplysia siphon-withdrawal reflex circuit results in multiple sites of change in synaptic efficacy. In this dissertation I have used a realistic modeling approach (using an integrate-and-fire scheme), in conjunction with electrophysiological experiments, to evaluate the contribution of each site of plasticity to the sensitized response.^ This dissertation contains a detailed description of methodology for the construction of the model circuit, consisting of the LFS motor neurons and ten interneurons known to convey excitatory input to them. The model replicates closely the natural motor neuron firing response to a brief tactile stimulus.^ The various circuit elements have different roles for producing circuit output. For example, the sensory connections onto the motor neuron are important for the production of the phasic response, while the polysynaptic interneuronal connections are important for producing the tonic response.^ The multiple sites of plasticity that produce changes in circuit output also have specialized roles. Presynaptic facilitation of the sensory neuron to LFS connection enhances only the phasic component of the motor neuron firing response. The sensory neuron to interneuron connections primarily enhance the tonic component of the motor neuron firing response. Also, the L29 posttetanic potentiation and the L30 presynaptic inhibition primarily enhance the tonic component of the motor neuron firing response. Finally, the information content at the various sites of plasticity can shift with changes in stimulus intensity. This suggests that while the sites of plasticity encoding memory are fixed, the information content at these sites can be dynamic, shifting in anatomical location with changes in the intensity of the test stimulus.^ These sites of plasticity also produce specific changes in the behavioral response. Sensory-LFS plasticity selectively increases the amplitude of the behavioral response, and has no effect on the duration of the behavioral response. Interneuronal plasticity (L29 and L30) affects both the amplitude and duration of the behavioral response. Other sensory plasticity also affect both the amplitude and duration of the behavioral response, presumably by increasing the recruitment of the interneurons, which provide all of the effect on duration of the behavioral response. ^
Resumo:
We have studied GABAergic synaptic transmission in retinal ganglion cells and hippocampal pyramidal cells to determine, at a cellular level, what is the effect of the targeted disruption of the gene encoding the synthetic enzyme GAD65 on the synaptic release of γ-aminobutyric acid (GABA). Neither the size nor the frequency of GABA-mediated spontaneous inhibitory postsynaptic currents (IPSCs) were reduced in retina or hippocampus in GAD65−/− mice. However, the release of GABA during sustained synaptic activation was substantially reduced. In the retina both electrical- and K+-induced increases in IPSC frequency were depressed without a change in IPSC amplitude. In the hippocampus the transient increase in the probability of inhibitory transmitter release associated with posttetanic potentiation was absent in the GAD65−/− mice. These results indicate that during and immediately after sustained stimulation the increase in the probability of transmitter release is not maintained in GAD65−/− mice. Such a finding suggests a decrease in the size or refilling kinetics of the releasable pool of vesicles, and various mechanisms are discussed that could account for such a defect.
Resumo:
Distinct subpopulations of neurons in the brain contain one or more of the Ca(2+)-binding proteins calbindin D28k, calretinin, and parvalbumin. Although it has been shown that these high-affinity Ca(2+)-binding proteins can increase neuronal Ca2+ buffering capacity, it is not clear which aspects of neuronal physiology they normally regulate. To investigate this problem, we used a recently developed method for expressing calbindin D28k in the somatic and synaptic regions of cultured hippocampal pyramidal neurons. Ninety-six hours after infection with a replication-defective adenovirus containing the calbindin D28k gene, essentially all cultured hippocampal pyramidal neurons robustly expressed calbindin D28k. Our results demonstrate that while calbindin D28k does not alter evoked neurotransmitter release at excitatory pyramidal cell synapses, this protein has a profound effect on synaptic plasticity. In particular, we show that calbindin D28k expression suppresses posttetanic potentiation.
Resumo:
Miarka, B, Del Vecchio, FB, and Franchini, E. Acute effects and postactivation potentiation in the special judo fitness test. J Strength Cond Res 25(2): 427-431, 2011-The purpose of this study was to compare the acute short-term effects of (1) plyometric exercise, (2) combined strength and plyometric exercise (contrast), and (3) maximum strength performance in the Special Judo Fitness Test (SJFT). Eight male judo athletes (mean +/- SD, age, 19 +/- 1 years; body mass, 60.4 +/- 5 kg; height, 168.3 +/- 5.4 cm) took part in this study. Four different sessions were completed; each session had 1 type of intervention: (a) SJFT control, (b) plyometric exercises + SJFT, (c) maximum strength + SJFT, and (d) contrast + SJFT. The following variables were quantified: throws performed during series A, B, and C; total number of throws; heart rate immediately and 1 minute after the test; and test index. Significant differences were found in the number of throws during series A: the plyometric exercise (6.4 +/- 0.5 throws) was superior (p < 0.05) to the control condition (5.6 +/- 0.5 throws). Heart rate 1 minute after the SJFT was higher (p < 0.01) during the plyometric exercise (192 +/- 8 bpm) than during the contrast exercise (184 +/- 9 bpm). The contrast exercise (13.58 +/- 0.72) resulted in better index values than the control (14.67 +/- 1.30) and plyometric exercises (14.51 +/- 0.54). Thus, this study suggests that contrast and plyometric exercises performed before the SJFT can result in improvements in the test index and anaerobic power of judo athletes, respectively.
Resumo:
Batista, MAB, Roschel, H, Barroso, R, Ugrinowitsch, C, and Tricoli, V. Influence of strength training background on postactivation potentiation response. J Strength Cond Res 25(9): 2496-2502, 2011-The aim of this study was to evaluate the influence of the subjects` level of maximal dynamic strength and training background on postactivation potentiation (PAP). A group of 23 subjects, composed of power track-and-field athletes (PT = 8), bodybuilders (BB = 7), and physically active subjects (PA = 8), participated in the study. Maximal dynamic strength (1 repetition maximum test) was assessed in the leg press exercise for subjects` characterization. Their countermovement vertical jump (CMJ) performance was assessed before and after 2 different conditioning activity (CA) protocols (1 or 3 maximum voluntary isometric contractions [MVICs] of 5-second duration in the leg press exercise) or after control (no CA), performed on separate days. No significant differences among groups were found for CMJ height or take-off velocity after any of the CA protocols (p <= 0.05). However, individual analysis showed that some subjects increased performance in response to the CA, despite their previous training history. We concluded that subjects` level of maximal dynamic strength and training background have no influence on PAP manifestation. Our data suggest that coaches should individually identify the athletes that are PAP responders before introducing MVICs as part of their warm-up routines.
Resumo:
Dapsone (DDS) (4,4` diaminodiphenylsulfone), the drug of choice for the treatment of leprosy, frequently induces hemolytic anemia and methemoglobinemia. N-hydroxylation, one of the major pathways of biotransformation, has been constantly related to the methemeglobinemia after the use of the drug. In order to prevent the dapsone-induced hemotoxicity, N-acetylcysteine, a drug precursor of glutathione, was administered in combination with DDS to male Wistar rats, weighting 220-240 g. The animals were then anaesthetized and blood was collected from the aorta for determination of plasma DDS concentration by HPLC, determination of methemoglobinemia and glutathione by spectrophotometry, and for biochemical and hematological parameters. Our results showed that N-acetylcysteine enhanced dapsone-induced methemoglobinemia due to increased dapasone plasmatic concentration and consequent increased N-hydroxylamine formation. We concluded that drug interactions with dapsone require individually studies in order to avoid undesirable effects of dapsone.
Resumo:
The avian hippocampus plays a pivotal role in memory required for spatial navigation and food storing. Here we have examined synaptic transmission and plasticity within the hippocampal formation of the domestic chicken using an in vitro slice preparation. With the use of sharp microelectrodes we have shown that excitatory synaptic inputs in this structure are glutamatergic and activate both NMDA-and AMPA-type receptors on the postsynaptic membrane. In response to tetanic stimulation, the EPSP displayed a robust long-term potentiation (LTP) lasting >1 hr. This LTP was unaffected by blockade of NMDA receptors or chelation of postsynaptic calcium. Application of forskolin increased the EPSP and reduced paired-pulse facilitation: (PPF), indicating an increase in release probability. In contrast, LTP was not associated with a change in the PPF ratio. Induction of LTP did not occlude the effects of forskolin. Thus, in contrast to NMDA receptor-independent LTP in the mammalian brain, LTP in the chicken hippocampus is not attributable to a change in the probability of transmitter release and does not require activation of adenylyl cyclase, These findings indicate that a novel form of synaptic plasticity might underlie learning in the avian hippocampus.
Resumo:
Fear conditioning is a paradigm that has been used as a model for emotional learning in animals'. The cellular correlate of fear conditioning is thought to be associative N-methyl-D-aspartate (NMDA) receptor-dependent synaptic plasticity within the amygdala(1-3). Here we show that glutamatergic synaptic transmission to inhibitory interneurons in the basolateral amygdala is mediated solely by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. In contrast to AMPA receptors at inputs to pyramidal neurons, these receptors have an inwardly rectifying current-voltage relationship, indicative of a high permeability to calcium(4 5), Tetanic stimulation of inputs to interneurons caused an immediate and sustained increase in the efficacy of these synapses. This potentiation required a rise in postsynaptic calcium, but was independent of NMDA receptor activation. The potentiation of excitatory inputs to interneurons was reflected as an increase in the amplitude of the GABAA-mediated inhibitory synaptic current in pyramidal neurons. These results demonstrate that excitatory synapses onto interneurons within a fear conditioning circuit show NMDA-receptor independent long-term potentiation. This plasticity might underlie the increased synchronization of activity between neurons in the basolateral amygdala after fear conditioning(6).
Resumo:
Molecular mechanisms of zinc potentiation were investigated in recombinant human alpha 1 glycine receptors (GlyRs) by whole-cell patch-clamp recording and [H-3]strychnine binding assays. In the wild-type (WT) GlyR, 1 mu M zinc enhanced the apparent binding affinity of the agonists glycine and taurine and reduced their concentrations required for half-maximal activation. Thus, in the WT GlyR, zinc potentiation apparently occurs by enhancing agonist binding. However, analysis of GlyRs incorporating mutations in the membrane-spanning domain M1-M2 and M2-M3 loops, which are both components of the agonist gating mechanism, indicates that most mutations uncoupled zinc potentiation from glycine-gated currents but preserved zinc potentiation of taurine-gated currents. One such mutation in the M2-M3 loop, L274A, abolished the ability of zinc to potentiate taurine binding but did not inhibit zinc potentiation of taurine-gated currents. In this same mutant where taurine acts as a partial agonist, zinc potentiated taurine-gated currents but did not potentiate taurine antagonism of glycine-gated currents, suggesting that zinc interacts selectively with the agonist transduction pathway. The intracellular M246A mutation, which is unlikely to bind zinc, also disrupted zinc potentiation of glycine currents. Thus, zinc potentiation of the GlyR is mediated via allosteric mechanisms that are independent of its effects on agonist binding.
Resumo:
Establishment of long-term potentiation (LTP) at perforant path synapses is highly correlated with increased expression of Egr and AP-1 transcription factors in rat dentate gyrus granule cells. We have investigated whether increased transcription factor levels are reflected in increased transcription factor activity by assessing Egr and AP-I DNA binding activity using gel shift assays. LTP produced an increase in binding to the Egr element, which was NMDA receptor-dependent and correlated closely with our previously reported increase in Egr-1 (zif/268) protein levels. Supershift analysis confirmed involvement of Egr-1, but not Egr-2 in the DNA binding activity. AP-1 DNA binding was also rapidly elevated in parallel with protein levels, however, the peak increase in activity was delayed until 4 h, a time point when we have previously shown that only jun-D protein was elevated. These data indicate that binding of Egr-1 and AP-1 to their response elements is increased in two phases. This may result in activation of distinct banks of target genes which contribute to the establishment of persistent LTP. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Fear-potentiated startle is a well-established measure of emotional learning in nonhuman animals. In humans, startle potentiation in anticipation of an aversive unconditional stimulus (US) has been interpreted as reflecting the same emotional process. This interpretation was supported by previous failures to fmd startle potentiation in anticipation of nonaversive USs, reactiontime tasks. The present research questions these results. Experiment 1 found startle-potentiation in anticipation of an aversive US, which resulted in increased dislike of the conditional stimulus (CS), and in anticipation of a nonaversive US, which did not affect CS valence. Experiment 2 replicated the latter finding, indicating that provision of performance feedback enhanced the salience of the reaction time task USs and thus anticipatory startle potentiation. The present results pose problems for the interpretation of fmdings of potentiated startle in human-aversive conditioning as reflecting emotion. Rather, startle potentiation during aversive and non-aversive conditioning may reflect the attentional processes known to occur during human-associative learning.