874 resultados para posterior longitudinal ligament
Resumo:
Intraoperative ultrasound (IOUS) has been described to be useful during central corpectomy for compressive cervical myelopathy. This study aimed at documenting the utility of IOUS in oblique cervical corpectomy (OCC). Prospective data from 24 patients undergoing OCC for cervical spondylotic myelopathy and ossified posterior longitudinal ligament (OPLL) were collected. Patients had a preoperative cervical spine magnetic resonance (MR) image, IOUS and a postoperative cervical CT scan. Retrospective data from 16 historical controls that underwent OCC without IOUS were analysed to compare the incidence of residual compression between the two groups. IOUS identified the vertebral artery in all cases, detected residual cord compression in six (27%) and missed compression in two cases (9%). In another two cases with OPLL, IOUS was sub-optimal due to shadowing. IOUS measurement of the corpectomy width correlated well with these measurements on the postoperative CT. The extent of cord expansion noted on IOUS after decompression showed no correlation with immediate or 6-month postoperative neurological recovery. No significant difference in residual compression was noted in the retrospective and prospective groups of the study. Craniocaudal spinal cord motion was noted after the completion of the corpectomy. IOUS is an inexpensive and simple real-time imaging modality that may be used during OCC for cervical spondylotic myelopathy. It is helpful in identifying the vertebral artery and determining the trajectory of approach, however, it has limited utility in patients with OPLL due to artifacts from residual ossification.
Resumo:
Ossification of the posterior longitudinal ligament (OPLL) is a significantly critical pathology that can eventually cause serious myelopathy. Ossification commences in the vertebral posterior longitudinal ligaments, and intensifies and spreads with the progression of the disease, resulting in osseous projections and compression of the spinal cord. However, the paucity of histological studies the underlying mechanisms of calcification and ossification processes remain obscure. The pathological process could be simulated in the ossifying process of the ligament in mutant spinal hyperostotic mouse (twy/twy). The aim of this study is to observe that enlargement of the nucleus pulposus followed by herniation, disruption and regenerative proliferation of annulus fibrosus cartilaginous tissues participated in the initiation of ossification of the posterior longitudinal ligament of twy/twy mice.
Resumo:
Posterior cruciate ligament (PCL) injuries are often associated with other ligament lesions. Multiligament reconstructions require an important quantity of grafts and often determine the need for cadaver allografts during the surgical repair procedures. Herein, the fundamentals of allografts that have been currently used for PCL reconstructions are overviewed. The main issues to be considered when surgeons choose this therapeutic option are also discussed.
Resumo:
PURPOSE: The purpose of this study was to evaluate the clinical and subjective outcomes after arthroscopic-assisted double-bundle posterior cruciate ligament (PCL) reconstruction. METHODS: A series of 15 patients with grade III isolated chronic PCL tears underwent double-bundle PCL reconstruction. Of these patients, 8 (53%) had simultaneous fractures. The mean time from accident to surgery was 10.8 months (range, 8 to 15 months). The mean age at the time of surgery was 28.2 years (range, 17 to 43 years). All of the patients reported knee insecurity during activities of daily living or light sporting activities, with associated anterior knee pain in 5 patients. Preoperatively, posterolateral or posteromedial corner injuries were ruled out through accurate clinical examination. The knees were assessed before surgery and at a mean follow-up of 3.2 years (range, 2 to 5 years) with a physical examination, 4 different rating scales, and stress radiographs obtained with a Telos device (Telos, Marburg, Germany). RESULTS: Postoperative physical examination revealed a reduction of the posterior drawer and tibial step-off in all cases, although the posterior laxity was not completely normalized. Nevertheless, the patients were subjectively better after surgery. The subjective International Knee Documentation Committee score was significantly ameliorated. With regard to the objective International Knee Documentation Committee score, 6 knees (40%) were graded as abnormal because of posterior displacement of 6 mm or greater on follow-up stress radiographs with the Telos device. On the Lysholm knee scoring scale, the score was excellent in 13% of patients and good in 87%. The mean score on the Hospital for Special Surgery knee ligament rating scale was 85.8. The Tegner activity score showed an amelioration after surgery, but no patient resumed his or her preinjury level of activities. The postoperative stress radiographs revealed an improvement in posterior instability of 50% or more in all but 3 knees (20%). CONCLUSIONS: Our technique of double-bundle PCL reconstruction produced a significant reduction in knee symptoms and allowed the patients to return to moderate or strenuous activity, although the posterior tibial translation was not completely normalized and our results appear to be no better than the results of single-bundle PCL reconstruction. LEVEL OF EVIDENCE: Level IV, therapeutic case series.
Resumo:
Introduction: Accurate and reproducible tibial tunnel placement minimizing the risk of neurovascular damage is a crucial condition for successful arthroscopic reconstruction of the posterior cruciate ligament (PCL). This step is commonly performed under fluoroscopic control. Hypothesis: Performing the tibial tunnel under exclusive arthroscopic control allows accurate and reliable tunnel placement according to recommendations in the literature. Materials and Methods: Between February 2007 and December 2009, 108 arthroscopic single bundle PCL reconstructions in tibial tunnel technique were performed. The routine postoperative radiographs were screened according to previously defined quality criterions. After critical analysis, the radiographs of 48 patients (48 knees) were enrolled in the study. 10 patients had simultaneous ACL reconstruction and 7 had PCL revision surgery. The tibial tunnel was placed under direct arthroscopic control through a posteromedial portal using a standard tibial aming device. Key anatomical landmarks were the exposed tibial insertion of the PCL and the posterior horn of the medial meniscus. First, the centre of the posterior tibial tunnel outlet on the a-p view was determined by digital analysis of the postoperative radiographes. Its distance to the medial tibial spine was measured parallel to the tibia plateau. The mediolateral position was expressed by the ratio between the distance of the tunnel outlet to the medial border and the total width of the tibial plateau. On the lateral view the vertical tunnel position was measured perpendicularly to a tangent of the medial tibial plateau. All measurement were repeated at least twice and carried out by two examiners. Results: The mean mediolateral tunnel position was 49.3 ± 4.6% (ratio), 6.7 ± 3.6 mm lateral to the medial tibial spine. On the lateral view the tunnel centre was 10.1 ± 4.5 mm distal to the bony surface of the medial tibial plateau. Neurovascular damage was observed in none of our patients. Conclusion: The results of this radiological study confirm that exclusive arthroscopic control for tibial tunnel placement in PCL reconstruction yields reproducible and accurate results according to the literature. Our technique avoids radiation, facilitates the operation room setting and enables the surgeon to visualize the anatomic key landmarks for tibial tunnel placement.
Resumo:
PURPOSE: Reconstruction of the posterior cruciate ligament (PCL) yields less satisfying results than anterior cruciate ligament reconstruction with respect to laxity control. Accurate tibial tunnel placement is crucial for successful PCL reconstruction using arthroscopic tibial tunnel techniques. A discrepancy between anatomical studies of the tibial PCL insertion site and surgical recommendations for tibial tunnel placement remains. The objective of this study was to identify the optimal placement of the tibial tunnel in PCL reconstruction based on clinical studies. METHODS: In a systematic review of the literature, MEDLINE, EMBASE, Cochrane Review, and Cochrane Central Register of Controlled Trials were screened for articles about PCL reconstruction from January 1990 to September 2011. Clinical trials comparing at least two PCL reconstruction techniques were extracted and independently analysed by each author. Only studies comparing different tibial tunnel placements in the retrospinal area were included. RESULTS: This systematic review found no comparative clinical trial for tibial tunnel placement in PCL reconstruction. Several anatomical, radiological, and biomechanical studies have described the tibial insertion sites of the native PCL and have led to recommendations for placement of the tibial tunnel outlet in the retrospinal area. However, surgical recommendations and the results of morphological studies are often contradictory. CONCLUSIONS: Reliable anatomical landmarks for tunnel placement are lacking. Future randomized controlled trials could compare precisely defined tibial tunnel placements in PCL reconstruction, which would require an established mapping of the retrospinal area of the tibial plateau with defined anatomical and radiological landmarks.
Resumo:
The relative advantages of cruciate retaining or cruciate resecting total knee replacement are still controversial. If the posterior cruciate ligament (PCL) is preserved, it should be properly balanced. In a previous study, it was demonstrated that increasing the flexion gap leads to an anterior translation of the tibia relative to the femur. Based on these results, we hypothesized that cutting the PCL increases the flexion gap and lessens anterior tibial translation.
Resumo:
Although intervertebral disc herniation is a well-known disease in dogs, pain management for this condition has remained a challenge. The goal of the present study is to address the lack of information regarding the innervation of anatomical structures within the canine vertebral canal. Immunolabeling was performed with antibodies against protein gene product 9.5, Tuj-1 (neuron-specific class III β-tubulin), calcitonin gene-related peptide, and neuropeptide Y in combination with the lectin from Lycopersicon esculentum as a marker for blood vessels. Staining was indicative of both sensory and sympathetic fibers. Innervation density was the highest in lateral areas, intermediate in dorsal areas, and the lowest in ventral areas. In the dorsal longitudinal ligament (DLL), the highest innervation density was observed in the lateral regions. Innervation was lower at mid-vertebral levels than at intervertebral levels. The presence of sensory and sympathetic fibers in the canine dura and DLL suggests that pain may originate from both these structures. Due to these regional differences in sensory innervation patterns, trauma to intervertebral DLL and lateral dura is expected to be particularly painful. The results ought to provide a better basis for the assessment of medicinal and surgical procedures.
Resumo:
PURPOSE: To document the neurological outcome, spinal alignment and segmental range of movement after oblique cervical corpectomy (OCC) for cervical compressive myelopathy. METHODS: This retrospective study included 109 patients--93 with cervical spondylotic myelopathy and 16 with ossified posterior longitudinal ligament in whom spinal curvature and range of segmental movements were assessed on neutral and dynamic cervical radiographs. Neurological function was measured by Nurick's grade and modified Japanese Orthopedic Association (JOA) scores. Eighty-eight patients (81%) underwent either a single- or two-level corpectomy; the remaining (19%) undergoing three- or four-level corpectomies. The average duration of follow-up was 30.52 months. RESULTS: The Nurick's grade and the JOA scores showed statistically significant improvements after surgery (p < 0.001). The mean postoperative segmental angle in the neutral position straightened by 4.7 ± 6.5°. The residual segmental range of movement for a single-level corpectomy was 16.7° (59.7% of the preoperative value), for two-level corpectomy it was 20.0° (67.2%) and for three-level corpectomies it was 22.9° (74.3%). 63% of patients with lordotic spines continued to have lordosis postoperatively while only one became kyphotic without clinical worsening. Four patients with preoperative kyphotic spines showed no change in spine curvature. None developed spinal instability. CONCLUSIONS: The OCC preserves segmental motion in the short-term, however, the tendency towards straightening of the spine, albeit without clinical worsening, warrants serial follow-up imaging to determine whether this motion preservation is long lasting.
Resumo:
PURPOSE: To determine whether motion preservation following oblique cervical corpectomy (OCC) for cervical spondylotic myelopathy (CSM) persists with serial follow-up. METHODS: We included 28 patients with preoperative and at least two serial follow-up neutral and dynamic cervical spine radiographs who underwent OCC for CSM. Patients with an ossified posterior longitudinal ligament (OPLL) were excluded. Changes in sagittal curvature, segmental and whole spine range of motion (ROM) were measured. Nathan's system graded anterior osteophyte formation. Neurological function was measured by Nurick's grade and modified Japanese Orthopedic Association (JOA) scores. RESULTS: The majority (23 patients) had a single or 2-level corpectomy. The average duration of follow-up was 45 months. The Nurick's grade and the JOA scores showed statistically significant improvements after surgery (p < 0.001). 17% of patients with preoperative lordotic spines had a loss of lordosis at last follow-up, but with no clinical worsening. 77% of the whole spine ROM and 62% of segmental ROM was preserved at last follow-up. The whole spine and segmental ROM decreased by 11.2° and 10.9°, respectively (p ≤ 0.001). Patients with a greater range of segmental movement preoperatively had a statistically greater range of movement at follow-up. The analysis of serial radiographs indicated that the range of movement of the whole spine and the range of movement at the segmental spine levels significantly reduced during the follow-up period. Nathan's grade showed increase in osteophytosis in more than two-thirds of the patients (p ≤ 0.01). The whole spine range of movement at follow-up significantly correlated with Nathan's grade. CONCLUSIONS: Although the OCC preserves segmental and whole spine ROM, serial measurements show a progressive decrease in ROM albeit without clinical worsening. The reduction in this ROM is probably related to degenerative ossification of spinal ligaments.
Resumo:
Objective. Twelve families that were multiply affected with diffuse idiopathic skeletal hyperostosis (DISH) and/or chondrocalcinosis, were identified on the island of Terceira, The Azores, potentially supporting the hypothesis that the 2 disorders share common etiopathogenic factors. The present study was undertaken to investigate this hypothesis. Methods. One hundred three individuals from 12 unrelated families were assessed. Probands were identified from patients attending the Rheumatic Diseases Clinic, Hospital de Santo Espirito, in The Azores. Family members were assessed by rheumatologists and radiologists. Radiographs of all family members were obtained, including radiographs of the dorsolumbar spine, pelvis, knees, elbows, and wrists, and all cases were screened for known features of chondrocalcinosis. Results. Ectopic calcifications were identified in 70 patients. The most frequent symptoms or findings were as follows: axial pain, elbow, knee and metacarpophalangeal (MCP) joint pain, swelling, and/or deformity, and radiographic enthesopathic changes. Elbow and MCP joint periarticular calcifications were observed in 35 and 5 patients, respectively, and chondrocalcinosis was identified in 12 patients. Fifteen patients had sacroiliac disease (ankylosis or sclerosis) on computed tomography scans. Fifty-two patients could be classified as having definite (17%), probable (26%), or possible (31%) DISH. Concomitant DISH and chondrocalcinosis was diagnosed in 12 patients. Pyrophosphate crystals were identified from knee effusions in 13 patients. The pattern of disease transmission was compatible with an autosomal-dominant monogenic disease. The mean age at which symptoms developed was 38 years. Conclusion. These families may represent a familial type of pyrophosphate arthropathy with a phenotype that includes peripheral and axial enthesopathic calcifications. The concurrence of DISH and chondrocalcinosis suggests a shared pathogenic mechanism in the 2 conditions.
Resumo:
Cervical compressive myelopathy is the most serious complication of cervical spondylosis or ossification of the posterior longitudinal ligament (OPLL) and the most frequent cause of spinal cord dysfunction. There is little information on the exact pathophysiological mechanism responsible for the progressive loss of neural tissue in the spinal cord of such patients. In this study, we used the spinal hyperostotic mouse (twy/twy) as a suitable model of human spondylosis, and OPLL to investigate the cellular and molecular changes in the spinal cord. Mutant twy/twy mouse developed ossification of the ligamentum flavum at C2-C3 and exhibited progressive paralysis.
Resumo:
Background:Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease.Methods:Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass.Results:The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) -2 progressively increased.Conclusions:Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. © 2013 Hirai et al.
Resumo:
OBJECTIVE. MRI and combined ankle and posterior subtalar MR arthrography in cadavers were used to evaluate the ligaments of the posterior and lateral talar processes. Subsequent anatomic and histologic correlation was performed. MATERIALS AND METHODS. Ten cadaveric ankles were used. Routine radiography and MRI were initially performed. Ankle and posterior subtalar MR arthrography, followed by anatomic and histologic analysis, was then performed to allow better assessment of the ligaments of the lateral and posterior talar process. RESULTS. In all subjects, MR arthrography provided superior delineation of the articular and periarticular structures, as well as the ligaments. The lateral talocalcaneal and medial talocalcaneal ligaments were best seen in the axial and coronal planes, respectively. The axial plane was best for visualizing the fibulotalocalcaneal ligament, and the sagittal plane was best for evaluating the posterior talocalcaneal ligament. The anterior and posterior talofibular ligaments and the posterior tibiotalar ligament (superficial and deep portions) were best seen in the axial plane. Histologic analysis was correlated to anatomic sectioning and showed the attachment sites of these ligaments. CONCLUSION. Combined ankle and posterior subtalar MR arthrography enhances visualization of the ligaments attaching to the posterior and lateral talar processes, including the posterior, lateral, and medial talocalcaneal and fibulotalocalcaneal ligaments.