926 resultados para posterior choice model
Resumo:
This paper uses a correlated multinomial logit model and a Poisson regression model to measure the factors affecting demand for different types of transportation by elderly and disabled people in rural Virginia. The major results are: (a) A paratransit system providing door-to-door service is highly valued by transportation-handicapped people; (b) Taxis are probably a potential but inferior alternative even when subsidized; (c) Buses are a poor alternative, especially in rural areas where distances to bus stops may be long; (d) Making buses handicap-accessible would have a statistically significant but small effect on mode choice; (e) Demand is price inelastic; and (f) The total number of trips taken is insensitive to mode availability and characteristics. These results suggest that transportation-handicapped people take a limited number of trips. Those they do take are in some sense necessary (given the low elasticity with respect to mode price or availability). People will substitute away from relying upon others when appropriate transportation is available, at least to some degree. But such transportation needs to be flexible enough to meet the needs of the people involved.
Resumo:
In this study, we investigate the qualitative and quantitative effects of an R&D subsidy for a clean technology and a Pigouvian tax on a dirty technology on environmental R&D when it is uncertain how long the research takes to complete. The model is formulated as an optimal stopping problem, in which the number of successes required to complete the R&D project is finite and learning about the probability of success is incorporated. We show that the optimal R&D subsidy with the consideration of learning is higher than that without it. We also find that an R&D subsidy performs better than a Pigouvian tax unless suppliers have sufficient incentives to continue cost-reduction efforts after the new technology success-fully replaces the old one. Moreover, by using a two-project model, we show that a uniform subsidy is better than a selective subsidy.
Resumo:
Face recognition with unknown, partial distortion and occlusion is a practical problem, and has a wide range of applications, including security and multimedia information retrieval. The authors present a new approach to face recognition subject to unknown, partial distortion and occlusion. The new approach is based on a probabilistic decision-based neural network, enhanced by a statistical method called the posterior union model (PUM). PUM is an approach for ignoring severely mismatched local features and focusing the recognition mainly on the reliable local features. It thereby improves the robustness while assuming no prior information about the corruption. We call the new approach the posterior union decision-based neural network (PUDBNN). The new PUDBNN model has been evaluated on three face image databases (XM2VTS, AT&T and AR) using testing images subjected to various types of simulated and realistic partial distortion and occlusion. The new system has been compared to other approaches and has demonstrated improved performance.
Resumo:
This paper introduces the discrete choice model-paradigm of Random Regret Minimization (RRM) to the field of environmental and resource economics. The RRM-approach has been very recently developed in the context of travel demand modelling and presents a tractable, regret-based alternative to the dominant choice-modelling paradigm based on Random Utility Maximization-theory (RUM-theory). We highlight how RRM-based models provide closed form, logit-type formulations for choice probabilities that allow for capturing semi-compensatory behaviour and choice set-composition effects while being equally parsimonious as their utilitarian counterparts. Using data from a Stated Choice-experiment aimed at identifying valuations of characteristics of nature parks, we compare RRM-based models and RUM-based models in terms of parameter estimates, goodness of fit, elasticities and consequential policy implications.
Resumo:
Dans les études sur le transport, les modèles de choix de route décrivent la sélection par un utilisateur d’un chemin, depuis son origine jusqu’à sa destination. Plus précisément, il s’agit de trouver dans un réseau composé d’arcs et de sommets la suite d’arcs reliant deux sommets, suivant des critères donnés. Nous considérons dans le présent travail l’application de la programmation dynamique pour représenter le processus de choix, en considérant le choix d’un chemin comme une séquence de choix d’arcs. De plus, nous mettons en œuvre les techniques d’approximation en programmation dynamique afin de représenter la connaissance imparfaite de l’état réseau, en particulier pour les arcs éloignés du point actuel. Plus précisément, à chaque fois qu’un utilisateur atteint une intersection, il considère l’utilité d’un certain nombre d’arcs futurs, puis une estimation est faite pour le restant du chemin jusqu’à la destination. Le modèle de choix de route est implanté dans le cadre d’un modèle de simulation de trafic par événements discrets. Le modèle ainsi construit est testé sur un modèle de réseau routier réel afin d’étudier sa performance.
Resumo:
Economists and policymakers have long been concerned with increasing the supply of health professionals in rural and remote areas. This work seeks to understand which factors influence physicians’ choice of practice location right after completing residency. Differently from previous papers, we analyse the Brazilian missalocation and assess the particularities of developing countries. We use a discrete choice model approach with a multinomial logit specification. Two rich databases are employed containing the location and wage of formally employed physicians as well as details from their post-graduation. Our main findings are that amenities matter, physicians have a strong tendency to remain in the region they completed residency and salaries are significant in the choice of urban, but not rural, communities. We conjecture this is due to attachments built during training and infrastructure concerns.
Resumo:
During the last years cities around the world have invested important quantities of money in measures for reducing congestion and car-trips. Investments which are nothing but potential solutions for the well-known urban sprawl phenomenon, also called the “development trap” that leads to further congestion and a higher proportion of our time spent in slow moving cars. Over the path of this searching for solutions, the complex relationship between urban environment and travel behaviour has been studied in a number of cases. The main question on discussion is, how to encourage multi-stop tours? Thus, the objective of this paper is to verify whether unobserved factors influence tour complexity. For this purpose, we use a data-base from a survey conducted in 2006-2007 in Madrid, a suitable case study for analyzing urban sprawl due to new urban developments and substantial changes in mobility patterns in the last years. A total of 943 individuals were interviewed from 3 selected neighbourhoods (CBD, urban and suburban). We study the effect of unobserved factors on trip frequency. This paper present the estimation of an hybrid model where the latent variable is called propensity to travel and the discrete choice model is composed by 5 alternatives of tour type. The results show that characteristics of the neighbourhoods in Madrid are important to explain trip frequency. The influence of land use variables on trip generation is clear and in particular the presence of commercial retails. Through estimation of elasticities and forecasting we determine to what extent land-use policy measures modify travel demand. Comparing aggregate elasticities with percentage variations, it can be seen that percentage variations could lead to inconsistent results. The result shows that hybrid models better explain travel behavior than traditional discrete choice models.
Resumo:
Mode of access: Internet.
Resumo:
The Operator Choice Model (OCM) was developed to model the behaviour of operators attending to complex tasks involving interdependent concurrent activities, such as in Air Traffic Control (ATC). The purpose of the OCM is to provide a flexible framework for modelling and simulation that can be used for quantitative analyses in human reliability assessment, comparison between human computer interaction (HCI) designs, and analysis of operator workload. The OCM virtual operator is essentially a cycle of four processes: Scan Classify Decide Action Perform Action. Once a cycle is complete, the operator will return to the Scan process. It is also possible to truncate a cycle and return to Scan after each of the processes. These processes are described using Continuous Time Probabilistic Automata (CTPA). The details of the probability and timing models are specific to the domain of application, and need to be specified using domain experts. We are building an application of the OCM for use in ATC. In order to develop a realistic model we are calibrating the probability and timing models that comprise each process using experimental data from a series of experiments conducted with student subjects. These experiments have identified the factors that influence perception and decision making in simplified conflict detection and resolution tasks. This paper presents an application of the OCM approach to a simple ATC conflict detection experiment. The aim is to calibrate the OCM so that its behaviour resembles that of the experimental subjects when it is challenged with the same task. Its behaviour should also interpolate when challenged with scenarios similar to those used to calibrate it. The approach illustrated here uses logistic regression to model the classifications made by the subjects. This model is fitted to the calibration data, and provides an extrapolation to classifications in scenarios outside of the calibration data. A simple strategy is used to calibrate the timing component of the model, and the results for reaction times are compared between the OCM and the student subjects. While this approach to timing does not capture the full complexity of the reaction time distribution seen in the data from the student subjects, the mean and the tail of the distributions are similar.
Resumo:
Considering the so-called "multinomial discrete choice" model the focus of this paper is on the estimation problem of the parameters. Especially, the basic question arises how to carry out the point and interval estimation of the parameters when the model is mixed i.e. includes both individual and choice-specific explanatory variables while a standard MDC computer program is not available for use. The basic idea behind the solution is the use of the Cox-proportional hazards method of survival analysis which is available in any standard statistical package and provided a data structure satisfying certain special requirements it yields the MDC solutions desired. The paper describes the features of the data set to be analysed.
Resumo:
This paper examines the effects of higher-order risk attitudes and statistical moments on the optimal allocation of risky assets within the standard portfolio choice model. We derive the expressions for the optimal proportion of wealth invested in the risky asset to show they are functions of portfolio returns third- and fourth-order moments as well as on the investor’s risk preferences of prudence and temperance. We illustrate the relative importance that the introduction of those higher-order effects have in the decision of expected utility maximizers using data for the US.
Resumo:
This paper documents the design and results of a study on tourists’ decision-making about destinations in Sweden. For this purpose, secondary data, available from surveys were used to identify which type of individual has the highest probability to revisit a destination and what are influencing factors to do so. A binary logit model is applied. The results show that very important influencing factors are the length of stay as well as the origin of the individual. These results could be useful for a marketing organization as well as for policy, to develop strategies to attract the most profitable tourism segment. Therefore, it can also be a great support for sustainable tourism development, where the main focus does not has priority on increasing number of tourists.
Resumo:
By reporting his satisfaction with his job or any other experience, an individual does not communicate the number of utils that he feels. Instead, he expresses his posterior preference over available alternatives conditional on acquired knowledge of the past. This new interpretation of reported job satisfaction restores the power of microeconomic theory without denying the essential role of discrepancies between one’s situation and available opportunities. Posterior human wealth discrepancies are found to be the best predictor of reported job satisfaction. Static models of relative utility and other subjective well-being assumptions are all unambiguously rejected by the data, as well as an \"economic\" model in which job satisfaction is a measure of posterior human wealth. The \"posterior choice\" model readily explains why so many people usually report themselves as happy or satisfied, why both younger and older age groups are insensitive to current earning discrepancies, and why the past weighs more heavily than the present and the future.