997 resultados para post-deformation softening


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relation between the deformation and post-deformation softening behaviours of austenite is examined in a 304 stainless steel. This correlation has been exploited in the modelling of hot rolling and it is argued here that the key to this understanding lies in the deformation structure. The latter is characterized in the present work by the fraction of dynamic recrystallization. The value of this fraction at the peak in the flow stress curve is found to decrease with increasing stress (i.e. with decreasing temperature and increasing strain rate). By contrast, the fraction of dynamic  recrystallization at the strain corresponding to the point where  post-deformation softening becomes strain independent is found to be constant. These observations are used to explain the nature of the important difference between the flow curve peak and the onset of strain independent post-deformation softening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The postdeformation recrystallization behavior of a hot-deformed austenitic stainless steel was investigated based on the first part of this study, in which the microstructure development during hot deformation and, in particular, the evolution of dynamic recrystallization (DRX), was studied. The effect of different parameters such as strain, strain rate, and temperature were examined. The dependency of the time for 50 pct softening, t 50, changed from “strain dependent” to “strain independent” at a transition strain (ε*) that was in the steady-state area of the hot deformation flow curve. The fully recrystallized microstructure showed a similar transition in strain sensitivity. However, this occurred at stains greater than ε*. A mathematical model was developed to predict the transition strain under different deformation conditions. Microstructural measurements show that the transition strain corresponds to approximately 50 pct DRX in the deformed structure at the point of unloading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plain carbon steel was deformed using a hot torsion deformation simulator. A schedule known to produce strain-induced ferrite was used with the strain interrupted for increasing intervals of time to determine the effect of an isothermal hold on the final microstructure. Microscopy and electron back-scattered diffraction (EBSD) were used to analyse the changes that occurred in the partially transformed microstructure during the hold and the subsequent applied strain. The strain-induced ferrite coarsened during the hold and this coarsened ferrite was refined during the second deformation. These results were compared to those obtained for a different plain carbon steel deformed in single pass rolling close to the Ar3 temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The post-deformation softening behaviour of austenite has been studied for various compositions and deformation conditions. The strain at which the transition from strain dependent to strain independent post-deformation softening behaviour occurs (ε*) has been found to coincide closely with the strain to the peak stress (εp) under certain conditions but not under others. It has been proposed that the relationship between ε* and εp may be described geometrically using the initial grain size and the dynamically recrystallised grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a novel experimental approach was applied to study the mechanism of the equiaxed shape retention in dynamic strain induced ferrite during deformation. The post-deformation ferrite evolution in both static and dynamic transformation was studied. The refinement potential and the origin of their differences in both mechanisms were analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interrupted hot compression tests are employed to examine the kinetics of recrystallization in magnesium alloy Mg–3Al–1Zn. It is found that recrystallization results in an increase in the flow stress encountered in subsequent deformation. The increase in flow stress is used to infer the fraction of recrystallization and empirical equations are developed to describe the kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project aimed to model the microstructure evolution during and following hot deformation using a cellular automaton approach. The flow curves, softening kinetics and final microstructures were used as the input data for the post-deformation simulation to elucidate the effect of dynamic recrystallization on the post-deformation softening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The texture and substructure development during post-dynamic annealing of an austenitic Ni-30%Fe model alloy after complete dynamic recrystallization was investigated using electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). A novel mechanism of metadynamic softening is proposed based on the experimental investigation of the grain structure, crystallographic texture and dislocation substructure evolution. The initial softening stage involved rapid growth of the dynamically formed nuclei and migration of the mobile boundaries. The subboundaries within DRX grains progressively disintegrated through dislocation climb and dislocation annihilation, which ultimately led to the formation of dislocation-free grains, while the grain boundary migration gradually became slower. As a result, the DRX texture was largely preserved throughout the annealing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current work investigates the microstructure evolution and softening processes that take place during annealing of an austenitic Ni-30Fe model alloy subjected to hot deformation in the dynamic recrystallization (DRX) regime. The substructure of the deformed matrix grains largely comprised organized microband arrays, though that of the DRX grains consisted of more random, complex subgrain/cell arrangements. This substructure disparity was also reflected by the distinct difference in the mechanism of post-deformation softening taking place during annealing of the deformed matrix and DRX grains. In the former, the recrystallization process took place through nucleation and growth of new grains fully replacing the deformed structure, as expected for the classical static recrystallization (SRX). The corresponding texture was essentially random, in contrast to that of the DRX grains dominated by low Taylor factor components. The microbands originally present within the deformed matrix grains displayed some tendency to disintegrate during annealing, nonetheless, they remained largely preserved even at prolonged holding times. During annealing of the fully DRX microstructure, a novel softening mechanism was revealed. The initial post-dynamic softening stage involved rapid growth of the dynamically formed nuclei and migration of the mobile boundaries in correspondence with the well-established metadynamic recrystallization (MDRX) mechanism. However, in contrast to the deformed matrix, SRX was not observed and the sub-boundaries within DRX grains rapidly disintegrated through dislocation climb and dislocation annihilation, which led to the formation of dislocation-free grains already at short holding times. Consequently, the DRX texture initially became slightly weakened and then remained largely preserved throughout the annealing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two distinct substructures were produced in a Ni-30Fe austenitic model alloy by different thermomechanical processing routes. The first substructure largely displayed organized, banded subgrain arrangements with alternating misorientations, resulting from the deformation at a strain just before the initiation of dynamic recrystallization (DRX). By contrast, the second substructure was more random in character and exhibited complex subgrain/cell arrangements characterized by local accumulation of misorientations, formed through DRX. During the post-deformation annealing, the latter substructure revealed a rapid disintegration of dislocation boundaries leading to the formation of dislocation-free grains within a short holding time, though the former largely preserved its characteristics till becoming replaced by growing statically recrystallized grains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetics of short-range ordering (SRO) in Ag with 21, 23 and 28 at% Zn is investigated by residual resistometry during isochronal and isothermal heat treatment for different states of post-deformation defect annealing after cold-rolling to about 30 and 60% thickness reduction. Resistivity changes due to pure ordering can be separated from the as-measured total resistivity change which includes defect annealing. Although the initial state of SRO of the as-rolled material can be estimated to be comparably low, for as-rolled and partially annealed states by appropriate thermal treatment evolution of SRO is achieved which corresponds quite well to that of recrystallized samples. It is observed, however, that quenched-in surplus vacancies contribute considerably to the ordering process for the recrystallized state and that this contribution is still increased by the grain growth during the final stage of annealing. It therefore turns out that SRO-kinetics under equilibrium vacancy conditions can be better observed in a state of post-deformation annealing, for which deformation induced point defects are annealed-out, but a relatively high dislocation density is still present to act as a vacancy sink. Copyright (C) 1996 Acta Metallurgica Inc.