946 resultados para positive end-expiratory pressure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In patients with acute respiratory distress syndrome, positive end-expiratory pressure is associated with alveolar recruitment and lung hyperinflation despite the administration of a low tidal volume. The best positive end-expiratory pressure should correspond to the best compromise between recruitment and distension, a condition that coincides with the best respiratory elastance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to assess positive end-expiratory pressure (PEEP)-induced lung overdistension and alveolar recruitment in six patients with acute lung injury (ALI) using a computed tomographic (CT) scan method. Lung overdistension was first determined in six healthy volunteers in whom CT sections were obtained at FRC and at TLC with a positive airway pressure of 30 cm H2O. In patients, lung volumes were quantified by the analysis of the frequency distribution of CT numbers on the entire lung at zero end-expiratory pressure (ZEEP) and PEEP. In healthy volunteers at FRC, the distribution of the density histograms was monophasic with a peak at -791 ± 12 Hounsfield units (HU). The lowest CT number observed was -912 HU. At TLC, lung volume increased by 79 ± 35% and the peak CT number decreased to -886 ± 26 HU. More than 70% of the increase in lung volume was located below -900 HU, suggesting that this value can be considered as the threshold separating normal aeration from overdistension. In patients with ALI, at ZEEP the distribution of density histograms was either monophasic (n = 3) or biphasic (n = 3). The mean CT number was -319 ± 34 HU. At PEEP 13 ± 3 cm H2O, lung volume increased by 47 ± 19% whereas mean CT number decreased to -538 ± 171 HU. PEEP induced a mean alveolar recruitment of 320 ± 160 ml and a mean lung overdistension of 238 ± 320 ml. In conclusion, overdistended lung parenchyma of healthy volunteers is characterized by a CT number below -900 HU. This threshold can be used in patients with ALI for differentiating PEEP-induced alveolar recruitment from lung overdistension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Methods: Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Results: Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. Conclusion: In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Acquired immunodeficiency syndrome (AIDS) is a pandemic disease commonly associated with respiratory infections, hypoxemia, and death. Noninvasive PEEP has been shown to improve hypoxemia. In this study, we evaluated the physiologic effects of different levels of noninvasive PEEP in hypoxemic AIDS patients. METHODS: Thirty AIDS patients with acute hypoxemic respiratory failure received a randomized sequence of noninvasive PEEP (5, 10, or 15 cm H2O) for 20 min. PEEP was provided through a facial mask with pressure-support ventilation (PSV) of 5 cm H2O and an F-IO2, of 1. Patients were allowed to breathe spontaneously for a 20-min washout period in between each PEEP trial. Arterial blood gases and clinical variables were recorded after each PEEP treatment. RESULTS: The results indicate that oxygenation improves linearly with increasing levels of PEEP. However, oxygenation levels were similar regardless of the first PEEP level administered (5, 10, or 15 cm H2O), and only the subgroup that received an initial treatment of the lowest level of PEEP (ie, 5 cm H2O) showed further improvements in oxygenation when higher PEEP levels were subsequently applied. The P-aCO2, also increased in response to PEEP elevation, especially with the highest level of PEEP (ie, 15 cm H2O). PSV of 5 cm H2O use was associated with significant and consistent improvements in the subjective sensations of dyspnea and respiratory rate reported by patients treated with any level of PEEP (from 0 to 15 cm H2O). CONCLUSIONS: AIDS patients with hypoxemic respiratory failure improve oxygenation in response to a progressive sequential elevation of PEEP (up to 15 cm H2O). However, corresponding elevations in P-aCO2, limit the recommended level of PEEP to 10 cm H2O. At a level of 5 cm H2O, PSV promotes an improvement in the subjective sensation of dyspnea regardless of the PEEP level employed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurally adjusted ventilatory assist (NAVA) delivers airway pressure (Paw) in proportion to neural inspiratory drive as reflected by electrical activity of the diaphragm (EAdi). Changing positive end-expiratory pressure (PEEP) impacts respiratory muscle load and function and, hence, EAdi. We aimed to evaluate how PEEP affects the breathing pattern and neuroventilatory efficiency during NAVA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Including positive end-expiratory pressure (PEEP) in the manual resuscitation bag (MRB) may render manual hyperinflation (MHI) ineffective as a secretion maneuver technique in mechanically ventilated patients. In this study we aimed to determine the effect of increased PEEP or decreased compliance on peak expiratory flow rate (PEF) during MHI. A blinded, randomized study was performed on a lung simulator by 10 physiotherapists experienced in MHI and intensive care practice. PEEP levels of 0-15 cm H2O, compliance levels of 0.05 and 0.02 L/cm H2O, and MRB type were randomized. The Mapleson-C MRB generated significantly higher PEF (P < 0.01, d = 2.72) when compared with the Laerdal MRB for all levels of PEEP. In normal compliance (0.05 L/cm H2O) there was a significant decrease in PEF (P < 0.01, d = 1.45) for a PEEP more than 10 cm H2O in the Mapleson-C circuit. The Laerdal MRB at PEEP levels of more than 10 cm H2O did not generate a PEF that is theoretically capable of producing two-phase gas-liquid flow and, consequently, mobilizing pulmonary secretions. If MHI is indicated as a result of mucous plugging, the Mapleson-C MRB may be the most effective method of secretion mobilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclical recruitment of atelectasis with each breath is thought to contribute to ventilator-associated lung injury. Extrinsic positive end-expiratory pressure (PEEPe) can maintain alveolar recruitment at end exhalation, but PEEPe depresses cardiac output and increases overdistension. Short exhalation times can also maintain end-expiratory recruitment, but if the mechanism of this recruitment is generation of intrinsic PEEP (PEEPi), there would be little advantage compared with PEEPe. In seven New Zealand White rabbits, we compared recruitment from increased respiratory rate (RR) to recruitment from increased PEEPe after saline lavage. Rabbits were ventilated in pressure control mode with a fraction of inspired O(2) (Fi(O(2))) of 1.0, inspiratory-to-expiratory ratio of 2:1, and plateau pressure of 28 cmH(2)O, and either 1) high RR (24) and low PEEPe (3.5) or 2) low RR (7) and high PEEPe (14). We assessed cyclical lung recruitment with a fast arterial Po(2) probe, and we assessed average recruitment with blood gas data. We measured PEEPi, cardiac output, and mixed venous saturation at each ventilator setting. Recruitment achieved by increased RR and short exhalation time was nearly equivalent to recruitment achieved by increased PEEPe. The short exhalation time at increased RR, however, did not generate PEEPi. Cardiac output was increased on average 13% in the high RR group compared with the high PEEPe group (P < 0.001), and mixed venous saturation was consistently greater in the high RR group (P < 0.001). Prevention of end-expiratory derecruitment without increased end-expiratory pressure suggests that another mechanism, distinct from intrinsic PEEP, plays a role in the dynamic behavior of atelectasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To investigate the use of nasal intermittent positive pressure ventilation (NIPPV) in level three neonatal intensive care units (NICU) in northeastern Brazil. Methods: This observational cross-sectional survey was conducted from March 2009 to January 2010 in all level three NICUs in northeastern Brazil that are registered in the Brazilian Registry of Health Establishments (Cadastro Nacional de Estabelecimentos de Saude, CNES) of the Ministry of Health. Questionnaires about the use of NIPPV were sent to the NICU directors in each institution. Statistical analysis was conducted using the software Epi-Info 6.04 and double data entry. A chi-square test was used to compare variables, and the level of statistical significance was set at p <= 0.05. Results: This study identified 93 level three NICUs in northeastern Brazil registered in CNES, and 87% answered the study questionnaire. Most classified themselves as private institutions (30.7%); 98.7% used NIPPV; 92.8 % adapted mechanical ventilators for NIPPV and used short binasal prongs as the interface (94.2%). Only 17.3% of the units had a protocol for the use of NIPPV. Mean positive inspiratory pressure and positive end-expiratory pressure were 20.0 cmH(2)O (standard deviation [SD]: 4.47) and 5.0 cmH(2)O (SD: 0.84). Conclusion: NICUs in northeastern Brazil use nasal intermittent positive pressure ventilation, but indications and ventilation settings are not the same in the different institutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The rapid shallow breathing index (RSBI) is the most widely used index within intensive care units as a predictor of the outcome of weaning, but differences in measurement techniques have generated doubts about its predictive value. Objective: To investigate the influence of low levels of pressure support (PS) on the RSBI value of ill patients. Method: Prospective study including 30 patients on mechanical ventilation (MV) for 72 hours or more, ready for extubation. Prior to extubation, the RSBI was measured with the patient connected to the ventilator (Drager (TM) Evita XL) and receiving pressure support ventilation (PSV) and 5 cmH(2)O of positive end expiratory pressure or PEEP (RSBI_MIN) and then disconnected from the VM and connected to a Wright spirometer in which respiratory rate and exhaled tidal volume were recorded for 1 min (RSBI_ESP). Patients were divided into groups according to the outcome: successful extubation group (SG) and failed extubation group (FG). Results: Of the 30 patients, 11 (37%) failed the extubation process. In the within-group comparison (RSBI_MIN versus RSBI_ESP), the values for RSBI_MIN were lower in both groups: SG (34.79 +/- 4.67 and 60.95 +/- 24.64) and FG (38.64 +/- 12.31 and 80.09 +/- 20.71; p<0.05). In the between-group comparison, there was no difference in RSBI_MIN (34.79 +/- 14.67 and 38.64 +/- 12.31), however RSBI_ESP was higher in patients with extubation failure: SG (60.95 +/- 24.64) and FG (80.09 +/- 20.71; p<0.05). Conclusion: In critically ill patients on MV for more than 72h, low levels of PS overestimate the RSBI, and the index needs to be measured with the patient breathing spontaneously without the aid of pressure support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and objective: There are no data about the influence of anaesthetics on cardiovascular variables during pressure support ventilation of the lungs through the laryngeal mask airway. We compared propofol, sevoflurane and isoflurane for maintenance of anaesthesia with the ProSeal (R) laryngeal mask airway during pressure support ventilation. Methods: Sixty healthy adults undergoing peripheral musculo-skeletal surgery were randomized for maintenance with sevoflurane end-tidal 29%, isoflurane end-tidal 1.1% or propofol 6 mg kg(-1) h(-1) in oxygen 33% and air. Pressure support ventilation comprised positive end-expiratory pressure set at 5 cmH(2)O, and pressure support set 5 cmH(2)O above positive end-expiratory pressure. Pressure support was initiated when inspiration produced a 2 cmH(2)O reduction in airway pressure. A blinded observer recorded cardiorespiratory variables (heart rate, mean blood pressure, oxygen saturation, air-way occlusion pressure, respiratory rate, expired tidal volume, expired minute volume and end-tidal CO2), adverse events and emergence times. Results: Respiratory rate and minute volume were 10-21% lower, and end-tidal CO2 6-11% higher with the propofol group compared with the sevoflurane or isoflurane groups, but otherwise cardiorespiratory variables were similar among groups. No adverse events occurred in any group. Emergence times were longer with the propofol group compared with the sevoflurane or isoflurane groups (10 vs. 7 vs. 7 min). Conclusion: Lung ventilation is less effective and emergence times are longer with propofol than sevoflurane or isoflurane for maintenance of anaesthesia during pressure support ventilation with the ProSeal (R) laryngeal mask airway. However, these differences are small and of doubtful clinical importance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," published in 2004. DESIGN: Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. METHODS: We used the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation (1) indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost) or clearly do not. Weak recommendations (2) indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. RESULTS: Key recommendations, listed by category, include early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7-10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure > or = 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for postoperative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7-9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B), targeting a blood glucose < 150 mg/dL after initial stabilization (2C); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); and a recommendation against the use of recombinant activated protein C in children (1B). CONCLUSIONS: There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les pédiatres intensivistes ont plusieurs éléments disponibles pour guider leurs décisions par rapport à la ventilation mécanique. Par contre, aucune étude prospective ne décrit les éléments auxquels les intensivistes se réfèrent pour modifier les paramètres du respirateur. Objectifs : Décrire la pratique actuelle de la modification des paramètres du respirateur aux soins intensifs du CHU Sainte-Justine, un hôpital pédiatrique tertiaire. Hypothèse : 80% des modifications des paramètres du respirateur influant sur l’épuration du CO2 sont liées à l’analyse de la PCO2 ou du pH et 80% des modifications des paramètres d’oxygénation sont liés à l’analyse de l’oxymétrie de pouls. Méthodes : En se servant d’un logiciel de recueil de données, les soignants ont enregistré un critère de décision primaire et tous les critères de décision secondaires menant à chaque modification de paramètre du respirateur au moment même de la modification. Résultats : Parmi les 194 modifications des paramètres du respirateur influant sur l’épuration du CO2, faites chez vingts patients, 42.3% ±7.0% avaient pour critère primaire la PCO2 ou le pH sanguin. Parmi les 41 modifications de la pression expiratoire positive et les 813 modifications de la fraction d’oxygène inspirée, 34.1% ±14.5% et 84.5% ±2.5% avaient pour critère primaire l’oxymétrie de pouls, respectivement. Conclusion : Les médecins surestiment le rôle de la PCO2 et du pH sanguins et sousestiment le rôle d’autres critères de décision dans la gestion de la ventilation mécanique. L’amélioration de notre compréhension de la pratique courante devrait aider à l’éboration des systèmes d’aide à la décision clinique en assistance respiratoire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluar si el Heliox reduce la resistencia en la vía aérea en niños y adolescentes con patología bronquial obstructiva que requieren ventilación mecánica. Materiales y Métodos: Estudio prospectivo observacional descriptivo en niños y adolescentes con patología bronquial obstructiva y ventilación mecánica con Fi02 ≤ 0,5. Medición de variables: resistencia, presión pico, presión media de la vía aérea, presión meseta, volumen corriente, autoPEEP, distensibilidad, PetCO2, ventilación de espacio muerto antes de inicio de heliox y a los 30 minutos, 2, 4, 6, 12, 18 y 24 horas y diariamente hasta suspenderlo por extubación o FiO2 > 0,5. Resultados: Resultados parciales, incluyó 9 pacientes encontrando descenso significativo de resistencia espiratoria a los 30 minutos (51,2 vs 32,3; p=0,0008 ), 2 horas ( 51,2 vs 33,4; p=0,0019) y 4 horas (51,2 vs 30,7; p=0,0012) así como de la resistencia inspiratoria a la hora 2 (48,6 vs 36,2; p = 0,013) y hora 4 (48,6 vs 30 ; p=0,004). Se observó tendencia al descenso de la PetCO2 que no fue significativa (52,3 vs 34,3: p=0,06). No se evidenció cambios en las variables; autoPEEP, presión pico, presión media de la vía aérea, distensibilidad, ventilación de espacio muerto, presión meseta y volumen corriente antes y después del inicio del Heliox. Conclusión: La ventilación mecánica con Heliox en niños con patología bronquial obstructiva parece ser que reduce de manera significativa la resistencia de la vía aérea, con tendencia al descenso de la PetC02. Se necesitan estudios prospectivos al menos observacionales analíticos que corroboren estos hallazgos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The Intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) have a impact on the respiratory system and the recommendations for mechanical ventilation of patients with IAH/ACS remain unclear. Our study characterize the influence of elevated intra-abdominal pressure (IAP) and positive end-expiratory pressure (PEEP) on airway plateau pressure (PPLAT) and bladder pressure (PBLAD). Methods: Nine (n=9) deeply anesthetized swine were mechanically ventilated via tracheostomy: volume-controlled mode at tidal volume = 10 ml/kg, frequency=15, Inspiratory:Expiratory ratio=1:2 and PEEP of 1 and 10 cmH2O (PEEP1 and PEEP10, respectively). A tracheostomy tube was place in the peritoneal cavity and different levels of IAP were applied utilizing a CPAP system. Measurements were performed during both PEEP1 and PEEP10. Results: PBLAD increased as experimental IAP rose. Minimal underestimation of IAP by PBLAD was observed. Applying PEEP10 did not significantly affect the correlation between experimental IAP and PBLAD. PBLAD (in cmH2O) was reflected by changes in PPLAT regardless of the PEEP.