987 resultados para porous electrode
Resumo:
Current-potential relationships are derived for porous electrode systems following a homogeneous model and whenadsorbed intermediates participate in the electrode reaction. Limiting Tafel slopes were deduced and compared with thecorresponding behavior on planar electrode systems. The theoretical results showed doubling of Tafel slopes when theslow-step is a charge-transfer reaction and a nonlogarithmic current-voltage behavior when the slow-step is a chemical reaction.Comparison of the experimental results with theory for the case of oxygen reduction on carbon surfaces in alkalinemedia indicates that a slow chemical reaction following the initial charge-transfer reaction to be the likely rate-controllingstep. Theoretical relationships are utilized to determine the exchange current density and the surface coverage by the adsorbedintermediates during the course of oxygen reduction from alkaline solutions on "carbon." Tafel slope measurementson planar and porous electrodes for the same reaction are suggested as one of the diagnostic criteria for elucidatingthe mechanistic pathways of electrochemical reactions.
Resumo:
An electrochemically impregnated sintered-nickel porous electrode with a capacity of 225 +/- 10 mAh per g of active material has been developed. This capacity is comparable with any state-of-the-art nickel hydroxide electrode reported in the literature, such as the stabilized alpha-nickel hydroxides that contain aluminium, iron and other trivalent cations. A technical update on various types of nickel positive electrodes is given.
Resumo:
In the present study, a method based on transmission-line mode for a porous electrode was used to measure the ionic resistance of the anode catalyst layer under in situ fuel cell operation condition. The influence of Nafion content and catalyst loading in the anode catalyst layer on the methanol electro-oxidation and direct methanol fuel cell (DMFC) performance based on unsupported Pt-Ru black was investigated by using the AC impedance method. The optimal Nafion content was found to be 15 wt% at 75 degrees C. The optimal Pt-Ru loading is related to the operating temperature, for example, about 2.0 mg/cm(2) for 75-90 degrees C, 3.0 mg/cm2 for 50 degrees C. Over these values, the cell performance decreased due to the increases in ohmic and mass transfer resistances. It was found that the peak power density obtained was 217 mW/cm(2) with optimal catalyst and Nafion loading at 75 degrees C using oxygen. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
A nanocomposite porous electrode structure consisting of hierarchical iodine-doped zinc oxide (I-ZnO) aggregates combined with the two simple solution-processed interfacial modifications i.e. a ZnO compact layer (CL) and a TiO2 protective layer (PL) has been developed in order to understand electron transport and recombination in the photoanode matrix, together with boosting the conversion efficiency of I-ZnO based dye-sensitized solar cells (DSCs). Electrochemical impedance spectra demonstrate that ZnO CL pre-treatment and TiO2 PL post-treatment synergistically reduce charge-transfer resistance and suppress electron recombination. Furthermore, the electron lifetime in two combined modifications of IZnO + CL + PL photoelectrode is the longest in comparison with the other three photoelectrodes. As a consequence, the overall conversion efficiency of I-ZnO + CL + PL DSC is significantly enhanced to 6.79%, with a 36% enhancement compared with unmodified I-ZnO DSC. Moreover, the stability of I-ZnO + CL + PL cell is improved as compared to I-ZnO one. The mechanism of electron transfer and recombination upon the introduction of ZnO CL and TiO2 PL is also proposed in this work.
Resumo:
This work was focused on the analysis of transport, thermomechanical and electrochemical properties of a series of perovskite-like oxide materials and composites for potential applications as anodes of intermediate-temperature solid oxide fuel cells (SOFCs) with lanthanum gallate and silicate solid electrolytes. The primary attention was centered on A(Mn,Nb)O3-δ (A = Sr, Ca) and (La,Sr)(Mn,Ti)O3-based systems, lanthanum chromite substituted with acceptor-type and variable-valence cations, and various Ni-containing cermets. Emphasis was given to phase stability of the materials, their crystal structure, microstructure of porous electrode layers and dense ceramics, electronic conductivity, Seebeck coefficient, oxygen permeability, thermal and chemical induced expansion, and anodic overpotentials of the electrodes deposited onto (La,Sr)(Ga,Mg)O3- and La10(Si,Al)6O27- based electrolyte membranes. In selected cases, roles of oxygen diffusivity, states of the transition metal cations relevant for the electronic transport, catalytically active additives and doped ceria protective interlayers introduced in the model electrochemical cells were assessed. The correlations between transport properties of the electrode materials and electrochemical behavior of porous electrodes showed that the principal factors governing anode performance include, in particular, electronic conduction of the anode compositions and cation interdiffusion between the electrodes and solid electrolytes. The latter is critically important for the silicatebased electrolyte membranes, leading to substantially worse anode properties compared to the electrochemical cells with lanthanum gallate solid electrolyte. The results made it possible to select several anode compositions exhibiting lower area-specific electrode resistivity compared to known analogues, such as (La,Sr)(Cr,Mn)O3-δ.
Resumo:
Lo scopo di questa tesi è stato la produzione di un elettrolizzatore ad ossidi solidi (SOEC) mediante tecniche economiche e facilmente industrializzabili. Fondamentale a questo scopo è stata la realizzazione di una semicella costituita da un anodo poroso a base di La0.8Sr0.2MnO3-Ce0.8Gd0.2O2-δ (LSM-GDC) ed un elettrolita denso a base di Ce0.8Gd0.2O2-δ (GDC). Le tecniche utilizzate per la produzione di questo sistema sono state il colaggio su nastro e la serigrafia. Anche se generalmente, le celle SOEC vengono prodotte catodo supportate, in questo studio, l’elemento supportante scelto è stato l’anodo poiché questo garantisce una migliore stabilità meccanica all’intera cella. Tale substrato è stato ottenuto mediante colaggio su nastro accoppiato con un metodo innovativo di sinterizzazione denominato sinterizzazione reattiva, processo che prevede la formazione della fase di interesse durante un unico trattamento termico di eliminazione degli additivi organici e consolidamento del manufatto finale. La membrana elettrolitica per l’ottenimento del bilayer anodo-elettrolita, è stata prodotta mediante sia serigrafia che colaggio su nastro. L’accurato studio dell’evoluzione di fase della polvere anodica, l’ottimizzazione della sospensione per colaggio su nastro e dei trattamenti termici hanno permesso l’ottenimento di anodi (fino a dimensioni di 10x10 cm2). Lo studio dei profili di sinterizzazione delle polveri anodica ed elettrolitica e dell’influenza della tecnica di formatura sulla sinterabilità dei layer elettrolitici prodotti hanno inoltre permesso l’ottenimento di una semicella planare costituita da un elettrodo poroso ed una membrana elettrolitica densa adatte per applicazioni SOEC.
Resumo:
The electrodeposition of copper onto copper, gold, palladium and glassy carbon (GC) electrodes via a hydrogen bubble templating method is reported. It is found that the composition of the underlying electrode material significantly influences the morphology of the copper electrodeposit. Highly ordered porous structures are achieved with Cu and Au electrodes, however on Pd this order is disrupted and a rough randomly oriented surface is formed whereas on GC a bubble templating effect is not observed. Chronopotentiograms recorded during the electrodeposition process allows bubble formation and detachment from the surface to be monitored where distinctly different potential versus time profiles are observed at the different electrodes. The porous Cu surfaces are characterised with scanning electron microscopy, X-ray diffraction and cyclic voltammetric measurements recorded under alkaline conditions. The latter demonstrates that there are active sites present on electrodeposited copper whose coverage and reactivity depend on the underlying electrode material. The most active Cu surface is achieved at a Pd substrate for both the hydrogen evolution reaction and the catalytic reduction of ferricyanide ions with thiosulphate ions. This demonstrates that the highly ordered porous structure on the micron scale which typifies the morphology that can be achieved with the hydrogen bubbling template method is not required in producing the most effective material.
Resumo:
The use of fractional-factorial methods in the optimization of porous-carbon electrode structure is discussed with respect to weight-loss of carbon during gas treatment, weight and mixing time of binder, compaction temperature, time and pressure, and pressure of feed gas. The experimental optimization of an air electrode in alkaline solution is described.
Resumo:
Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge-discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g(-1) is obtained. When the acid-treated sample is heated at 300 A degrees C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g(-1). The rate capability study suggests that the sample provides about 150 mAh g(-1) at a specific discharge current of 1.25 A g(-1). Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.
Resumo:
A porous layered composite of Li2MnO3 and LiMn1/3Co1/3Ni1/3O2 (composition: Li1.2Mn0.53Ni0.13Co0.13O2) is prepared by reverse microemulsion method employing a soft polymer template and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The product samples possess mesoporosity with broadly distributed pores of about 30 nm diameters. There is a decrease in pore volume as well as in surface area by increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity values of the samples prepared at 800 and 900 degrees C are about 250 mAh g(-1) at a specific current of 40 mA g(-1) with an excellent cycling stability. A value of 225 mAh g(-1) is obtained at the end of 30 charge-discharge cycles. Both these composite samples possess high rate capability, but the 800 degrees C sample is marginally superior to the 900 degrees C sample. A discharge capacity of 100 mAh g(-1) is obtained at a specific current of 1000 mA g(-1). The high rate capability is attributed to porous nature of the composite samples. (C) 2013 The Electrochemical Society. All rights reserved.
Resumo:
Porous alpha-Fe2O3 nanostructures have been synthesized by sol-gel route. The effect of preparation temperature on the morphology, structure, and electrochemical stability upon cycling has been studied for supercapacitor application. The discharge capacitance of alpha-Fe2O3 prepared at 300 A degrees C is 193 F g(-1), when the electrodes are cycled in 0.5 M Na2SO3 at a specific current of 1 A g(-1). The capacitance retention after 1,000 cycles is about 92 % of the initial capacitance at a current density of 2 A g(-1). The high discharge capacitance as well as stability of alpha-Fe2O3 electrodes is attributed to large surface area and porosity of the material. There is a decrease in specific capacitance (SC) on increasing the preparation temperature. As iron oxides are inexpensive, the synthetic route adopted for alpha-Fe2O3 in the present study is convenient and the SC is high with good cycling stability, the porous alpha-Fe2O3 is a potential material for supercapacitors.
Resumo:
A porous layered composite of Li2MnO3 and LiMn0.35Ni0.55Fe0.1O2 (composition:Li1.2Mn0.54Ni0.22Fe0.04O2) is prepared by inverse microemulsion method and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The X-ray diffraction, scanning electron microscopy, and transmission electron microscopy studies suggested that well crystalline submicronsized particles are obtained. The product samples possess mesoporosity with broadly distributed pores around 10 similar to 50 nm diameter. Pore volume and surface area decrease by increasing the temperature of preparation. However, the electrochemical activity of the composite samples increases with an increase in temperature. The discharge capacity values of the samples prepared at 900 degrees C are about 186 mAh g(-1) at a specific current of 25 mA g(-1) with an excellent cycling stability. The composite sample also possesses high rate capability. The high rate capability is attributed to the porous nature of the material. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Layered composite samples of lithium-rich manganese oxide (Li1.2Mn0.6Ni0.2O2) are prepared by a reverse microemutsion route employing a soft polymer template and studied as a positive electrode material. The product samples possess dual porosity with distribution of pores at 3.5 and 60 nm. Pore volume and surface area decrease on increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity value of the samples prepared at 800 and 900 degrees C is about 240 mA h g(-1) at a specific current of 25 mA g(-1) with a good cycling stability. The composite sample heated at 900 degrees C possesses a high rate capability with a discharge capacity of 100 mA h g(-1) at a specific current of 500 mA g(-1). The high rate capability is attributed to porous nature of the composite sample.
Resumo:
Porous titanium dioxide synthesized with a bicontinuous surfactant template is a promising method that leads to a high active surface area electrode. The template used is based on a water/isooctane/dioctyl sodium sulfosuccinate salt together with lecithin. Several parameters were varied during the synthesis to understand and optimize channel formation mechanisms. The material is patterned in stacked conical channels, widening towards the centre of the grains. The active surface area increased by 116% when the concentration of alkoxide precursors was decreased and increased by 241% when the template formation temperature was decreased to 10C. Increasing the oil phase viscosity tends to widen the pore aperture, thus decreasing the overall active surface area. Changing the phase proportions alters the microemulsion integrity and disrupts channel formation.