798 resultados para polymer resins
Resumo:
Työssä tutkittiin jalometallien selektiivistä erottamista kloridiliuoksista synteettisten polymeerihartsien avulla. Laboratoriokokeissa keskityttiin tutkimaan kullan erottamista hydrofiilisen polymetakrylaattipohjaisen adsorbentin avulla. Lähtökohtana oli platinarikaste, joka sisälsi kullan lisäksi platinaa, palladiumia, hopeaa, kuparia, rautaa, vismuttia, seleeniä ja telluuria. Mittauksissa tutkittiin eri metallien ja puolimetallien adsorptiota hartsiin tasapaino-, kinetiikka- ja kolonnikokeilla. Työssä käytettiin myös adsorption simulointiin monikomponenttierotuksen dynaamiseen mallintamiseen tarkoitettua tietokoneohjelmaa, johon tarvittavat parametrit estimoitiin kokeellisen datan avulla. Tasapainokokeet yhtä metallia sisältäneistä liuoksista osoittivat, että hartsi adsorboi tehokkaasti kultaa kaikissa tutkituissa suolahappopitoisuuksissa (1-6 M). Kulta muodostaa hartsiin hyvin adsorboituvia tetrakloroauraatti(III)ioneja, [AuCl4]-, jotka ovat erittäin stabiileja pieniin kloridipitoisuuksiin saakka. Suolahappopitoisuudella oli merkitystä ainoastaan raudan adsorptioon, joka kasvoi huomattavasti suolahappopitoisuuden noustessa johtuen raudan taipumuksesta muodostaa hyvin adsorboituvia [FeCl4]--ioneja väkevissä suolahappopitoisuuksissa. Muiden tutkittujen alkuaineiden adsorptiot jäivät alhaisiksi kaikilla suolahappopitoisuuksilla. Rikasteliuoksella tehdyt tasapainokokeet osoittivat, että adsorptiokapasiteetti kullalle riippuu voimakkaasti muista läsnäolevista komponenteista. Kilpaileva adsorptio kuvattiin Langmuir-Freundlich-isotermillä. Kolonnikokeet osoittivat, että hartsi adsorboi kullan lisäksi hieman myös rautaa ja telluuria, jotka saatiin kuitenkin eluoitua hartsista täysin 5 M suolahappopesulla ja sitä seuraavalla 1 M suolahappopesulla. Tehokkaaksi liuokseksi kullan desorboimiseen osoittautui asetonin ja 1 M suolahapon seos. Kolonnierotuksen eri vaiheet pystyttiin tyydyttävästi kuvaamaan simulointimallilla.
Resumo:
This article gives an overview of polymer materials used for lead separation and preconcentration. Different kinds of polymer resins, commercial or not, are cited as well as the most used functional groups attached to polymer backbones. The synthesis of these resins and conditions of lead adsorption and elution are remarked. The influence of the porous structure of the polymer on the resines performance is described as well as the use of spacer arms.
Resumo:
Silica-supported sulfonic acids are a class of solid Brønsted acid catalysts that generally comprise organo-sulfonic acid groups tethered to silica surfaces. Methodologies to prepare organically modified silica have been widely developed in separation science and the techniques for their preparation are well documented. The application of this chemistry to prepare pure Brønsted sulfonic acid functionalized mesoporous silicas has stimulated significant research effort in this area, since these materials are interesting alternatives to commercially available sulfonated polymer resins, such as Amberlyst–15 and Nafion-H (sulfonated polystyrene and perfluorinated sulfonic acid resins respectively), which suffer from low surface areas and thermal stability. This chapter presents an overview of the preparation of mesostructured silica supported sulfonic acids, their catalytic applications and reviews the approaches taken to tune catalyst performance in organic transformations.
Resumo:
In this work a new method for crosslinking ultra-thin films with potential applications in sensor systems is proposed. The films were produced by layer-by-layer (LbL) assembly using a conducting polymer, poly(o-ethoxyaniline) (POEA), alternated with a thermosetting resin, novolac-type phenolformaldehyde (PF), crosslinked by a simple thermal treatment. The PF resin served as both alternating and crosslinking agents. The films were characterized by Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, thermogravimetry (TG), desorption, doping/dedoping cycling and electrical measurements. The results showed that film architecture and crosslinking degree can be controlled by the conditions used for film deposition (number of bilayers, polymer concentration, pH, and deposition time), and crosslinking time. Moreover, this approach offers several advantages such as fast curing time and low cost, indicating that these films can be used to produce sensors with improved stability.
Resumo:
Adding conductive carbon fillers to insulating thermoplastic resins increases composite electrical and thermal conductivity. Often, as much of a single type of carbon filler is added to achieve the desired conductivity, while still allowing the material to be molded into a bipolar plate for a fuel cell. In this study, varying amounts of three different carbons (carbon black, synthetic graphite particles, and carbon fiber) were added to Vectra A950RX Liquid Crystal Polymer. The in-plane thermal conductivity of the resulting single filler composites were tested. The results showed that adding synthetic graphite particles caused the largest increase in the in-plane thermal conductivity of the composite. The composites were modeled using ellipsoidal inclusion problems to predict the effective in-plane thermal conductivities at varying volume fractions with only physical property data of constituents. The synthetic graphite and carbon black were modeled using the average field approximation with ellipsoidal inclusions and the model showed good agreement with the experimental data. The carbon fiber polymer composite was modeled using an assemblage of coated ellipsoids and the model showed good agreement with the experimental data.
Resumo:
The purpose of this study was to evaluate the impact and fracture resistance of acrylic resins: a heat-polymerized resin, a high-impact resin and an experimental polymethyl methacrylate with elastomer in different proportions (10, 20, 40 and 60%). 120 specimens were fabricated and submitted to conventional heat-polymerization. For impact test, a Charpy-type impact tester was used. Fracture resistance was assessed with a 3-point bending test by using a mechanical testing machine. Ten specimens were used for each test. Fracture (MPa) and impact resistance values (J.m-1) were submitted to ANOVA - Bonferroni's test - 5% significance level. Materials with higher amount of elastomer had statistically significant differences regarding to impact resistance (p < 0.05). Fracture resistance was superior (p < 0.01) for high-resistance acrylic resin. The increase in elastomer concentration added to polymethyl methacrylate raised the impact resistance and decreased the fracture resistance. Processing the material by injection decreased its resistance to impact and fracture.
Resumo:
Glyoxalated soy flour adhesives for wood particleboard added with a much smaller proportion of glyoxalated lignin or tannin and without any addition of either formaldehyde or formaldehyde-based resin are shown to yield results satisfying the relevant standard specifications for interior wood boards. Adhesive resin formulations in which the total content of natural material is either 70 or 80% of the total resin solids content gave good results. The resins comprising 70% by weight of natural material can be used in a much lower proportion on wood chips and can afford pressing times fast enough to be significant under industrial panel pressing conditions. The best formulation of all the ones tried was the one based on glyoxalated precooked soy flour (SG), to which a condensed tannin was added in water solution and a polymeric isocyanate (pMDI), where the proportions of the components SG/T/pMDI was 54/16/30 by weight. (C) 2008 Wiley Periodicals, Inc.
Resumo:
Two different commercial crosslinked resins (Amberlite GT73 and Amberlite IRC748) were employed for anchoring silver. The -SH and -N(CH2COOH)2 groups, respectively, present on these resins were used for Ag+ chelation from an aqueous solution. The Ag+ ions were reduced with three different reductants: hydrazine, hydroxylamine, and formaldehyde (under an alkaline pH). The produced composites were characterized with thermogravimetry/differential thermogravimetry and scanning electron microscopy combined with a backscattered scanning electron detector. Energy-dispersive X-ray spectroscopy coupled to scanning electron microscopy allowed the observation of submicrometer particles of silver, and chemical microanalysis of emitted X-rays revealed the presence of metal on the internal and external surfaces of the composite microspheres. The amount of incorporated silver was determined by titration. The antibacterial activity of the silver/resin composites was determined toward 10(3)-10(7) cells/mL dilutions of the auxotrophic AB1157 Escherichia coli strain; the networks containing anchored submicrometer silver particles were completely bactericidal within a few minutes because of the combined action of silver and functional groups of the resins. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Micrometer-sized magnetic particles hosted on network material were successfully prepared by a simple chemical process (ion exchange followed by co-precipitation) from commercial styrene-divinylbenzene copolymers. Energy dispersive X-ray spectroscopy (EDS) coupled to scanning electron microscopy (SEM) allowed the observation of submicron particles. All the produced spherical beads have presented metallic particles (NiFe2O4, CuFe2O4, CoFe2O4, or MnFe2O4), either as isolated particles or agglomerates, located on their external and internal (within pores) The thermal stability of the composites, evaluated by thermogravimetric techniques, were found to be dependent on the amount of ferrite particles incorporated into them.
Resumo:
Phosphinic-derivative poly(styrene-co-divinylbenzene)-based on PS-DVB copolymers with different porosity degrees have been prepared by aromatic electrophilic substitution reaction using PCl(3)/AlCl(3) followed by base-promoted hydrolysis. The phosphorylation reaction was analyzed by infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetry (TG/DTG). In addition, the phosphorous content of the phosphorylated copolymers was determined by spectrophotometry using the method based on sodium molybdate reactant so that the extension of that modification could be assessed. The performance of the phosphorylated resins in the extraction of Pb(2+) from aqueous solutions in a batch system was also evaluated. The Pb(2+) content was determined by atomic absorption spectrometry (AAS). These materials presented excellent extraction capacity under the contact time of 30 min and pH 6.
Resumo:
Curing of diglycidyl ether of bisphenol A/diaminodiphenyl sulfone (DGEBA/DDS) epoxy resin has been effected by heating with radio frequency (RF) radiation at frequencies of 30-99 MHz. The epoxy resins can be cured rapidly at low RF power levels. Comparison of the kinetics of the RF curing with thermal curing while maintaining the same curing temperature revealed no differences. Previous differences in rates of thermal and microwave curing are believed to be due to lack of temperature control during microwave curing. For RF curing,the rate of cure, at constant power level, increases at lower RF frequency, thus emphasizing one of the principal advantages of RF curing over microwave curing. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The gel point of a dicyanate ester resin (Arocy B-10 (4-4'-dicyanato-2,2'-diphenylpropane)) heated following irradiation in the presence of the catalyst tricarbonyl cyclopentadienyl manganese (CpMn(CO)(3)) was studied using differential scanning calorimetry (d.s.c.) and dynamic rheological techniques over the temperature range 110-140 degrees C. The gel times of another commercial cyanate ester (RTX366) were also studied using independent rheological techniques, and the results agreed within experimental error. Gel times decreased linearly with increasing catalyst level and with increasing temperature according to an Arrhenius relation with activation energy of 68 +/- 6 kJmol(-1). The gel conversion was calculated by correlation of the rheological gel data to d.s.c. data to be 0.57 +/- 0.02, and differences between techniques, and between theoretical predictions, are discussed. Evidence is produced that the photocatalysed polymerization results in a greater rate of cyclotrimerization, less intramolecular cyclization and a more rigid network than the uncatalysed or metal salt-catalysed high-temperature polymerization. (C) 1997 Elsevier Science Ltd.
Resumo:
The reactions between novolac resins and hexamethylenetetramine (HMTA) which occur on curing have been studied by C-13 and N-15 high-resolution n.m.r. in both solution and the solid state. Strong evidence for the existence of many curing intermediates is obtained. New curing intermediates are reported along with experimental data to support previously postulated intermediates. The initial curing reactions between novolac and HMTA produce various substituted benzoxazines and benzylamines. Thermal decomposition/oxidation and further reactions of these initial intermediates generate methylene linkages between phenolic rings for chain extension and cross-linking. Among the three kinds of methylene linkages, the para-para methylene linkages are formed at relatively lower temperatures. Various imine, amide and imide side-products also concurrently appear during the process. The initial amount of HMTA plays a critical role in the curing reactivity and chemical structures of the cured resins. The lower the amount of HMTA, the lower the temperature at which curing occurs, and the lower the amount of the nitrogen-containing side-products in the finally cured resins. The ortho-linked intermediates are relatively stable, and can remain in the cured resins up to higher temperatures. The study provides an extensive description of the curing reactions of novolac resins. (C) 1997 Elsevier Science Ltd.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one factor at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as polymer mortar aggregates, without significant loss of mechanical properties with regard to non-modified polymer mortars.