66 resultados para polyfluorene


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blue emission of ethyl-hexyl substituted polyfluorene (PF2/6) films is accompanied by a low energy green emission peak around 500 nm in inert atmosphere. The intensity of this 500 nm peak is large in electroluminescence (EL) compared to photoluminescence (PL)measurements. Furthermore, the green emission intensity reduces dramatically in the presence of molecular oxygen. To understand this, we have modeled various nonradiative processes by time dependent quantum many body methods. These are (i) intersystem crossing to study conversion of excited singlets to triplets leading to a phosphorescence emission, (ii) electron-hole recombination (e-hR) process in the presence of a paramagnetic impurity to follow the yield of triplets in a polyene system doped with paramagnetic metal atom, and (iii) quenching of excited triplet states in the presence of oxygen molecules to understand the low intensity of EL emission in ambient atmosphere, when compared with that in nitrogen atmosphere. We have employed the Pariser-Parr-Pople Hamiltonian to model the molecules and have invoked electron-electron repulsions beyond zero differential approximation while treating interactions between the organic molecule and the rest of the system. Our time evolution methods show that there is a large cross section for triplet formation in the e-hR process in the presence of paramagnetic impurity with degenerate orbitals. The triplet yield through e-hR process far exceeds that in the intersystem crossing pathway, clearly pointing to the large intensity of the 500 nm peak in EL compared to PL measurements. We have also modeled the triplet quenching process by a paramagnetic oxygen molecule which shows a sizable quenching cross section especially for systems with large sizes. These studies show that the most probable origin of the experimentally observed low energy EL emission is the triplets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a series of highly efficient blue electroluminescent polymers with dopant-host systems and molecular dispersion features by selecting 1,8-naphthalimide derivatives as the light blue emissive dopant units, choosing polyfluorene as the deep blue emissive polymer host and covalently attaching the dopant units to the side chain of the polymer host. The polymers' EL spectra exhibited both deep blue emission from the polymer host and light blue emission from the dopant units because of the energy transfer and charge trapping from the polymer host to the dopant units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By selecting polyfluorene as the polymer host, choosing 2,1,3-benzothiadiazole derivative moieties as the red dopant units and covalently attaching 0.3 mol% of the dopant units to the side chain of the polymer host, we developed a novel series of red electroluminescent polymers of dopant/host system with molecular dispersion feature. Their EL spectra exhibited predominant red emission from the dopant units because of the energy transfer and charge trapping from the polymer backbone to the dopant units. The emission wavelength of the polymers could be tuned by modifying the chemical structures of the dopant units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anionic, phosphonate-functionalized polyfluorene, i.e., poly(9,9-bis(3'-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPNa), has been synthesized by copolymerization of phosphonic acid-substituted 2,7-dibromofluorene and phenyldiboronic ester via direct Suzuki polycondensation reaction in DMF/water. Polymer PFPNa is highly soluble and emissive in water with a solubility of 60 mg/mL and a photoluminescence quantum yield of 75%. The absorption and fluorescence spectra of PFPNa are strongly dependent on pH value owing to the partial protonation of phosphate groups and the aggregation of the polymer chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new kind of polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5 -(4',7'-di-2-thienyl-2',1',3',-benzothiadiazole) (PFDTBT), was prepared. The introduction of ZnO nanoparticles with perfect wurtzite crystal character into PFDTBT makes the resulted single-layer photovoltaic device to perform a significant photovoltaic response. Among the tested devices, the best performance is observed for that containing 60 wt% of ZnO nanoparticles, which has a photocurrent density of 1.17 mu A/cm(2), an open circuit voltage of 0.81 V. a fill factor of 0.09 and a power conversion efficiency of 0.009%. The results show that the polyfluorene derivatives/ZnO nanoparticles hybrid composites are excellent fluorescence and photovoltaic materials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new kind of polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5 -(4',7'-di-2-thienyl-2',1',3',-benzothiadiazole) (PFDTBT), was prepared. The introduction of ZnO nanoparticles with perfect wurtzite crystal character into PFDTBT makes the resulted single-layer photovoltaic device to perform a significant photovoltaic response. Among the tested devices, the best performance is observed for that containing 60 wt% of ZnO nanoparticles, which has a photocurrent density of 1.17 mu A/cm(2), an open circuit voltage of 0.81 V. a fill factor of 0.09 and a power conversion efficiency of 0.009%. The results show that the polyfluorene derivatives/ZnO nanoparticles hybrid composites are excellent fluorescence and photovoltaic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6'-phosphatehexyl)fluorene-alt-1,4-phenylene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluorescence sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(9,9-bis(3'-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensitivity due to the much longer side chain length. The positively charged metalloprotein cytochrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report enhanced polymer photovoltaic (PV) cells by utilizing ethanol-soluble conjugated poly (9, 9-bis (6'-diethoxylphosphorylhexyl) fluorene) (PF-EP) as a buffer layer between the active layer consisting of poly(3-hexylthiophene)/[6, 6]-phenyl C61-butyric acid methyl ester blend and the Al cathode. Compared to the control PV cell with Al cathode, the introduction of PF-EP effectively increases the shunt resistance and improves the photo-generated charge collection since the slightly thicker semi-conducting PF-EP layer may restrain the penetration of Al atoms into the active layer that may result in increased leakage current and quench photo-generated excitons. The power conversion efficiency is increased ca. 8% compared to the post-annealed cell with Al cathode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amplified spontaneous emission properties of a 2, 1, 3-benzothiadiazole attached polyfluorene semiconductor polymer were studied. The conjugated polymer shows a high photoluminescence quantum efficiency of 67% and emits a narrowed blue emissive spectrum with a full width at half-maximum of 3.6 nm when optically pumped, indicating better lasing action. A threshold energy as low as 0.22 mJ pulse(-1) cm(-2), a net gain of 40.54 cm(-1) and a loss of 7.8 cm(-1) were obtained, demonstrating that this conjugated polymer could be a promising candidate as the gain medium for the fabrication of blue polymer lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyfluorene (PF) is a class of typical blue electroluminescent (EL) material, but it exhibits undesired feature in the green spectral region under operation condition. We investigated the spectral properties of different device structures of poly(9,9-dioctylfluorene) (PFO)-based light-emitting diodes, and found that the interaction between cathode and PFO is the main origination of green emission in EL devices. The general method of inserting a buffer layer between the PFO and cathode can decrease the low energy band emission to purify the color and improve the EL performance of devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A white electroluminescent single polymer system with both high electroluminescence efficiency and excellent color rendering index (CRI) value is developed by covalently attaching blue, green, and red dopant units as individual light-emitting species to the side chain of polyfluorene as individual polymer host. A luminous efficiency of 8.6 cd A(-1), CIE coordinates of (0.33, 0.36) and CRI value of 88 was demonstrated with their single-layer devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four single polymers with two kinds of attachment of orange chromophore to blue polymer host for white electroluminescence (EL) were designed. The effect of the side-chain attachment and main-chain attachment on the EL efficiencies of the resulting polymers was compared. The side-chain-type single polymers are found to exhibit more efficient white EL than that of the main-chain-type single polymers. Based on the side-chain-type white single polymer with 4-(4-alkyloxy-phenyl)-7-(4-diphenylamino-phenyl)-2,1,3-benzothiadiazoles as the orange-dopant unit and polyfluorene as the blue polymer host, white EL with simultaneous orange (lambda(max) = 545 nm) and blue emission (lambda(max) = 432 nm/460 nm) is realised. A single-layer device (indium tin oxide/poly(3,4-ethylenedioxythiophene)/polymer/Ca/Al) made of these polymers emits white light with the Commission Internationale de l'Eclairage coordinates of (0.30,0.40), possesses a turn-on voltage of 3.5 V, luminous efficiency of 10.66 cd A(-1), power efficiency of 6.68 lm W-1, and a maximum brightness of 21240 cd m(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient white light-emitting polymer was developed with blue polyfluorene (PFO) chemically doped with orange fluorescent 1, 8-naphthalimide moieties. The emission spectrum can be easily tuned by varying the content of 1, 8-naphthalimide moieties. A white polymeric light-emitting diode (WPLED) with a structure of indium tin oxide (ITO)/the complex of (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid (PEDOT)/polymer/Ca/Al showed a current efficiency of 5.3 cd/A and a power efficiency of 2.8 Lm/W at 6 V with the Commission Internationale de L'Eclairage (CIE) coordinates at (0.25,0.35). Moreover, the WPLED from the copolymer showed a very stable white light emission at different driving voltage and brightness. The CIE coordinates of the WPLED were (0.25, 0.35), (0.26, O.36), and (0.26, 0.36) under driving voltages of 6, 8, and 10 V, corresponding to the brightness of 82, 3555, and 7530 cd/m(2), respectively. This approach for realization of white light emission is promising over the polymer blending system in terms of both efficiency and color stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New single-polymer electroluminescent systems containing two individual emission species - polyfluorenes as a blue host and 2,1,3-benzothiadiazole derivative units as an orange dopant on the main chain - have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue(lambda(max) = 421 nm/445 nm) and orange emission (lambda(max) = 564 nm)from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light-emitting diodes (PLEDs) based on the single-polymer systems has been investigated. The introduction of the highly efficient 4,7-bis(4-(N-phenyl-N-(4-methylphenyl)amino)phenyl)-2,1,3-benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single-layer device fabricated in air (indium tin oxide/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure-white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m(-2), luminance efficiency of 7.30 cd A(-1), and power efficiency of 3.34 lm W-1 can be obtained.