881 resultados para poly(ethylene terephthalate)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite advances in regenerative medicine, the cost of such therapies is beyond the reach of many patients globally in part due to the use of expensive biomedical polymers. Large volumes of poly(ethylene terephthalate) (PET) in municipal waste is a potential source of low cost polymers. A novel polyester was prepared by a catalyst-free, melt polycondensation reaction of bis(hydroxyethylene) terephthalate derived from PET post-consumer waste with other multi-functional monomers from renewable sources such as citric acid, sebacic acid and D-mannitol. The mechanical properties and degradation rate of the polyester can be tuned by varying the composition and the post-polymerization time. The polyester was found to be elastomeric, showed excellent cytocompatibility in vitro and elicited minimal immune response in vivo. Three-dimensional porous scaffolds facilitated osteogenic differentiation and mineralization. This class of polyester derived from low cost, recycled waste and renewable sources is a promising candidate for use in regenerative medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tensile and compression properties of self-reinforced poly(ethylene terephthalate) (SrPET) composites has been investigated. SrPET composites or all-polymer composites have improved mechanical properties compared to the bulk polymer but with maintained recyclability. In contrast to traditional carbon/glass fibre reinforced composites, SrPET composites are very ductile, resulting in high failure strains without softening or catastrophic failure. In tension, the SrPET composites behave linear elastically until the fibre-matrix interface fails, at which point the stiffness starts decreasing. As the material is further strained, strain hardening occurs and the specimen finally fails at a global strain above 10%. In compression, the composite initially fails through fibre yielding, and at higher strains through fibre bending. The stress-strain response is reminiscent of an elastic-perfectly plastic material with a high strain to failure (typically over 10%). This indicates that SrPET composites are not only candidates as semi-structural composites but also as highly efficient energy absorbing materials. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this article was the determination of the degree of crystallinity of a series of heat-set poly(ethylene terephthalate) (PET) films and their study by thermomechanical analysis (TMA) in order to elucidate a peculiar behaviour that takes place around the glass transition region. For this purpose, amorphous cast Mylar films from DuPont were annealed at 115 °C for various periods of time. Four methods were used to study the crystallinity of the samples prepared: differential scanning calorimetry (DSC), density measurements (DM), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FT-IR). From the results obtained, the following conclusions are drawn: amorphous PET Mylar films can be crystallized in a degree of about up to 30% after thermal treatment for 30 min (cold crystallization) above glass transition temperature. When these semicrystalline samples are subjected to TMA, they show a two step penetration of the probe into them, which decreases with the increase of the degree of crystallinity. The first step of penetration was attributed to the shrinkage of the amorphous or semicrystalline sample, which takes place on the glass transition temperature, while the second step was attributed to the continuous softening of the sample, and the reorganization of the matter which takes place on heating run due to cold crystallization. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isothermal crystallization kinetics of poly(ethylene oxide) (PEO) block in two poly(ethylene terephthalate) (PET)-PEO segmented copolymers was studied with differential scanning calorimetry. The Avrami equation failed to describe the overall crystallization process, but a modified Avrami equation, the Q equation, did. The crystallizability of the PET block and the different lengths of the PEO block exerted strong influences on the crystallization process, the crystallinity, and time final morphology of the PEO block. The mechanism of nucleation and the growth dimension of the PEG block were different because of the crystallizability of time PET block and the compositional heterogeneity. The crystallization of the PEO block was physically constrained by the microstructure of time PET crystalline phase, which resulted in a lower crystallization rate. However, this influence became weak with the increase in the soft-block length. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 similar to 1.2, probably reflecting one-dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of polyethylene oxide (PEO) in poly(ethylene terephthalate)poly(ethylene oxide) (PETPEO) segmented copolymer and PEO homopolymer has been studied by means of differential scanning calorimetry, as well as transmission electron microscope. The kinetics of PEO in copolymer and PEO homopolymer under nonisothermal crystallization condition has been analyzed by Ozawa equation. The results show that Ozawa equation only describes the crystallization behavior of PEO-6000 homopolymer successfully, but fails to describe the whole crystallization process of PEO in copolymer because the secondary crystallization in the later stage could not be neglected. Due to the constraint of PET segments imposed on the PEO segments, a distinct two stage of crystallization of PEO in copolymer has been investigated by using Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. In the case of PEO-6000 homopolymer, good linear relation for the whole crystallization process is obtained owing to the secondary crystallization does not occur under our experimental condition. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During heating of semicrystalline PET, a metastable melt forms far below the equilibrium melting temperature. Crystallization kinetics of this metastable melt is discussed on the basis of DSC results. From the metastable melt almost one-dimensional growth of the crystal occurs through heterogeneous nucleation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposites of poly(ethylene terephthalate) PET with a partially synthetic fluoromica were prepared by melt mixing and extruded into sheet and subjected to large-scale biaxial stretching. Transmission electron microscopy (TEM) analysis of the mica tactoids showed that biaxial stretching had caused the tactoids to be more orientated and with improved exfoliation. The moduli of the nanocomposites were enhanced with increasing mica loading and the reinforcement effect was higher when the stretch ratio was 2 or 2.5, accommodated by having more aligned tactoids and reduced agglomeration. Enhancement in modulus was less pronounced for a stretch ratio of 3. Storage modulus was enhanced more significantly above the glass transition temperature. The barrier properties were enhanced by addition of mica before and after stretching. The Halpin-Tsai theory underpredicted the relative modulus of the PET nanocomposites, whereas the Nielsen model over-predicted the relative permeability. POLYM. ENG. SCI., 2012. (c) 2011 Society of Plastics Engineers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations of the injection stretch-blow moulding process have been developed for the manufacture of poly(ethylene terephthalate) bottles using the commercial finite element package ABAQUS/standard. Initially a simulation of the manufacture of a 330 mL bottle was developed with three different material models (hyperelastic, creep, and a non-linear viscoelastic model (Buckley model)) to ascertain their suitability for modelling poly(ethylene terephthalate). The Buckley model was found to give results for the sidewall thickness that matched best with those measured from bottles off the production line. Following the investigation of the material models, the Buckley model was chosen to conduct a three-dimensional simulation of the manufacture of a 2 L bottle. It was found that the model was also capable of predicting the wall thickness distribution accurately for this bottle. In the development of the three-dimensional simulation a novel approach, which uses an axisymmetric model until the material reaches the petaloid base, was developed. This resulted in substantial savings in computing time. © 2000 IoM Communication Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the crystallization characteristics of melt compounded nanocomposites of poly(ethylene terephthalate) (PET) and single walled carbon nanotubes (SWNTs). Differential scanning calorimetry studies showed that SWNTs at weight fractions as low as 0.03 wt% enhance the rate of crystallization in PET, as the cooling nanocomposite melt crystallizes at a temperature 10 °C higher as compared to neat PET. Isothermal crystallization studies also revealed that SWNTs significantly accelerate the crystallization process. WAXD showed oriented crystallization of PET induced by oriented SWNTs in a randomized PET melt, indicating the role of SWNTs as nucleating sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)