41 resultados para polinomi
Resumo:
Questo lavoro si pone come obiettivo l'approfondimento della natura e delle proprietà dei polinomi espressi mediante la base di Bernstein. Introdotti originariamente all'inizio del '900 per risolvere il problema di approssimare una funzione continua su un intervallo chiuso e limitato della retta reale (Teorema di Stone-Weierstrass), essi hanno riscosso grande successo solo a partire dagli anni '60 quando furono applicati alla computer-grafica per costruire le cosiddette curve di Bezier. Queste, ereditando le loro proprietà geometriche da quelle analitiche dei polinomi di Bernstein, risultano intuitive e facilmente modellabili da un software interattivo e sono alla base di tutti i più moderni disegni curvilinei: dal design industriale, ai sistemi CAD, dallo standard SVG alla rappresentazione di font di caratteri.
Resumo:
Nella tesi viene studiata tramite un certo numero di esempi la corrispondenza di Galois per polinomi di terzo e quarto grado.
Resumo:
Il mio lavoro di tesi parte dall’idea di voler indagare su quanto fatto in una normale azione d’aula nel momento in cui vengono presentati i polinomi, ovvero nel momento in cui si presenta agli studenti quello che comunemente viene chiamato “calcolo letterale”. In questo passaggio, un ruolo fondamentale è quello rivestito dagli insegnanti, oltre che dai libri di testo, e per questo ho deciso di seguire come i primi affrontano l’argomento polinomi in classe: come e se questi vengono definiti, e se le definizioni utilizzate sono delle vere e proprie definizioni formali, o seguono altri schemi.
Resumo:
Questa tesi tratta di argomenti di Teoria di Galois. In essa sono presenti alcuni richiami fondamentali della teoria di Galois, come il gruppo di Galois di una estensione di campi di Galois e la corrispondenza di Galois. Prosegue con lo studio delle radici m-esime primitive dell'unità e dei polinomi ciclotomici. Infine si studia il gruppo di Galois di un polinomio ciclotomico.
Resumo:
In questa tesi riportiamo le definizioni ed i risultati principali relativi alla corrispondenza tra le successioni di polinomi di tipo binomiale (particolari basi dello spazio dei polinomi a coefficienti reali) e gli operatori delta, cioè operatori lineari sullo spazio dei polinomi che commutano con gli operatori di traslazione e il cui nucleo è costituito dai polinomi costanti. Nel capitolo 1 richiamiamo i concetti fondamentali sull'algebra delle serie formali e definiamo l'algebra degli operatori lineari invarianti per traslazione, dimostrando in particolare l'isomorfismo tra queste algebre. Nel capitolo 2, dopo aver dimostrato l'unicità della successione di base relativa ad un operatore delta, ricaviamo come esempio le successioni di base di tre operatori delta, che useremo durante tutto il capitolo: l'operatore derivata, l'operatore di differenza in avanti e l'operatore di differenza all'indietro. Arriviamo quindi a dimostrare un importante risultato, il Primo Teorema di Sviluppo, in cui facciamo vedere come le potenze di un operatore delta siano una base per l'algebra degli operatori invarianti per traslazione. Introducendo poi le successioni di Sheffer, possiamo dimostrare anche il Secondo Teorema di Sviluppo in cui esplicitiamo l'azione di un operatore invariante per traslazione su un polinomio, tramite un operatore delta fissato e una sua successione di Sheffer. Nell'ultima parte della tesi presentiamo i formalismi e alcune semplici operazioni del calcolo umbrale, che useremo per determinare le cosiddette costanti di connessione, ovvero le costanti che definiscono lo sviluppo di una successione binomiale in funzione di un'altra successione binomiale usata come base dello spazio dei polinomi.
Resumo:
Vengono presentate correzioni agli sviluppi asintotici di Edgeworth per densità di somme di variabili aleatorie stabili. Queste stime sono successivamente implementate in Matlab, con particolare attenzioni agli approssimanti in forma razionale di Padè. Nell'Appendice viene poi fornita la distribuzione di zeri degli approssimanti di Padè per la funzione esponenziale.
Resumo:
Nella tesi verranno presi in considerazione tre aspetti: si descriverà come la teoria dei nodi si sia sviluppata nel corso degli anni in relazione alle diverse scoperte scientifiche avvenute. Si potrà quindi subito avere una idea di come questa teoria sia estremamente connessa a diverse altre. Nel secondo capitolo ci si occuperà degli aspetti più formali di questa teoria. Si introdurrà il concetto di nodi equivalenti e di invariante dei nodi. Si definiranno diversi invarianti, dai più elementari, le mosse di Reidemeister, il numero di incroci e la tricolorabilità, fino ai polinomi invarianti, tra cui il polinomio di Alexander, il polinomio di Jones e quello di Kaufman. Infine si spiegheranno alcune applicazioni della teoria dei nodi in chimica, fisica e biologia. Sulla chimica, si definirà la chiralità molecolare e si mostrerà come la chiralità dei nodi possa essere utile nel determinare quella molecolare. In campo fisico, si mostrerà la relazione che esiste tra l'equazione di Yang-Baxter e i nodi. E in conclusione si mostrerà come modellare un importante processo biologico, la recombinazione del DNA, grazie alla teoria dei nodi.
Resumo:
In questa tesi si esaminano alcune questioni riguardanti le curve definite su campi finiti. Nella prima parte si affronta il problema della determinazione del numero di punti per curve regolari. Nella seconda parte si studia il numero di classi di ideali dell’anello delle coordinate di curve piane definite da polinomi assolutamente irriducibili, per ottenere, nel caso delle curve ellittiche, risultati analoghi alla classica formula di Dirichlet per il numero di classi dei campi quadratici e delle congetture di Gauss.
Resumo:
Questa trattazione si propone di fornire una spiegazione del fenomeno di Gibbs in termini matematici. Con l'espressione fenomeno di Gibbs intendiamo la presenza di forti oscillazioni nei polinomi di Fourier di una funzione con discontinuità di prima specie. Si osserva che queste anomalie, presenti vicino ai punti di discontinuità, non sembrano diminuire aumentando il grado del polinomio, al punto che la serie pare non convergere alla funzione sviluppata. Osserveremo che utilizzando un altro tipo di polinomi trigonometrici, quelli di Fejér in luogo di quelli di Fourier, scomparirà il fenomeno di Gibbs. Nonostante ciò, spesso si preferisce rappresentare una funzione utilizzando il suo polinomio di Fourier poiché questo è il polinomio trigonometrico che meglio approssima la funzione in norma quadratica.
Resumo:
Lo scopo di questa tesi è di esporre il cuore centrale della teoria di Galois, la risolubilità per radicali delle equazioni polinomiali nel caso in cui il campo di partenza abbia caratteristica 0. L’operato è articolato in tre capitoli. Nel primo capitolo vengono introdotte le nozioni fondamentali della teoria dei campi e della teoria di Galois. Nel secondo capitolo, si sviluppa il problema della risolubilità per radicali. Vengono prima introdotti i gruppi risolubili e alcune loro particolarità. Poi vengono introdotte le nozioni di estensioni radicali e risolubili e relativi teoremi. Nel paragrafo 2.3 viene dimostrato il teorema principale della teoria, il teorema di Galois, che identifica la risolubilità del gruppo di Galois con la risolubilità dell’estensione. Infine l’ultimo paragrafo si occupa della risolubilità dei polinomi, sfruttando il loro campo di spezzamento. Nel terzo ed ultimo capitolo, viene discussa la risolubilita` dell’equazione polinomiale generale di grado n. Vengono inoltre riportati diversi esempi ed infine viene presentato un esempio di estensione di Galois di grado primo p non risolubile in caratteristica p.