971 resultados para polarization potentials
Resumo:
In this work, we investigate the limitation of the use of strength coefficients on double folding potentials to study the presence of the threshold anomaly in the elastic scattering of halo nuclei at near barrier energies. For this purpose, elastic angular distributions and reaction cross sections for the He-6 on Bi-209 are studied. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A composite solid polymer electrolyte (SPE) of (PEO)(10)LiClO4-Al2O3 was prepared and Pt and stainless steel(SS) blocking electrodes were used for an impedance study. It was found that the semicircle in the high frequency range and the straight line in the low frequency range depend upon different blocking electrodes and polarization potentials applied in the experiments. In the equivalent circuit. two constant phase elements (CPE) have been used instead of the pure geometrical and double layer capacitances. respectively. A theoretical line calculated from their estimated values has a good correlation with the experiment data. Moreover. the equivalent circuit also can be used to explain the impedance properties of Pt and stainless steel (SS) blocking electrodes both in the high and the low frequency ranges. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A configuration-interaction approach, based on the use of B-spline basis sets combined with a model potential including monoelectronic and dielectronic core polarization effects, is employed to calculate term energies and wavefunctions for neutral Ca. Results are reported for singlet and triplet bound states, and some quasi-bound states above the lowest ionization limit, with angular momentum up to L = 4. Comparison with experiment and with other theoretical results shows that this method yields the most accurate energy values for neutral Ca obtained to date. Wavefunction compositions, necessary for labelling the levels, and the effects of semi-empirical polarization potentials on the wavefunctions are discussed, as are some recent identifications of doubly-excited states. It is shown that taking into account dielectronic core polarization changes the energies of the lowest terms in Ca significantly, in general by a few hundred cm(-1), the effect decreasing rapidly for the higher bound states. For Rydberg states with n approximate to 7 the accuracy of the results is often better than a few cm(-1). For series members (or perturbers) with a pronounced 3d character the error can reach 150 cm(-1). The wavefunctions are used to calculate oscillator strengths and lifetimes for a number of terms and these are compared with existing measurements. The agreement is good but points to a need for improved measurements.
Resumo:
We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the DPP approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of Li-7 followed by the breakup of Li-6.
Resumo:
Some atomic multipoles (charges, dipoles and quadrupoles) from the Quantum Theory of Atoms in Molecules (QTAIM) and CHELPG charges are used to investigate interactions between a proton and a molecule (F2, Cl2, BF, AlF, BeO, MgO, LiH, H2CO, NH3, PH3, BF3, and CO2). Calculations were done at the B3LYP/6-311G(3d,3p) level. The main aspect of this work is the investigation of polarization effects over electrostatic potentials and atomic multipoles along a medium to long range of interaction distances. Large electronic charge fluxes and polarization changes are induced by a proton mainly when this positive particle approaches the least electronegative atom of diatomic heteronuclear molecules. The search for simple equations to describe polarization on electrostatic potentials from QTAIM quantities resulted in linear relations with r-4 (r is the interaction distance) for many cases. Moreover, the contribution from atomic dipoles to these potentials is usually the most affected contribution by polarization what reinforces the need for these dipoles to a minimal description of purely electrostatic interactions. Finally, CHELPG charges provide a description of polarization effects on electrostatic potentials that is in disagreement with physical arguments for certain of these molecules. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Running title: Electrode potentials.
Resumo:
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein−protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson−Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos−c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos−c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.
Resumo:
Redox reactions which occur at positive potentials such as ferrous/ferric, hydroquinone/quinone, ferrocyanide/ferricyanide etc. in aqueous acidic electrolytes cannot be studied on non-platinum metals, for example, a Ni electrode. On the contrary, these reactions occur on polyaniline (PANI) modified Ni electrodes, as evidenced from cyclic voltammetry, amperometry and steady-state polarization experiments. Under identical experimental conditions of scan rate (v) and concentration (C), the peak current density (i(p)) values of Fe2+/Fe3+ redox reaction are greater on the PANI modified Ni than on Pt. Additionally, the peak potential separation (DeltaE(p)) of the voltammogram is lesser on the PANI modified Ni. With an increase in thickness of the PANI, DeltaE(p) increases suggesting that the redox reactions tend to depart from the reversibility. Scanning electron micrographs reveal the presence of a crystalline deposit of PANI on Ni when the thickness of PANI is about 0.08 mum. However, the PANI becomes amorphous and porous at higher thickness values. Raman spectroscopy and X-ray diffraction studies corroborate the observations made out of scanning electron microscopy. Higher catalytic activity of PANI is attributed to crystalline nature of PANI on Ni. Exchange current density and standard rate constant of Fe2+/Fe(3+)redox reaction are evaluated. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Submicron size Co, Ni and Co-Ni alloy powders have been synthesized by the polyol method using the corresponding metal malonates and Pd powder by reduction of PdOx in methanol. The kinetics of the hydrogen evolution reaction ( HER) in 6 M KOH electrolyte have been studied on electrodes made from the pressed powders. The d.c. polarization measurements have resulted in a value close to 120 mV decade(-1) for the Tafel slope, suggesting that the HER follows the Volmer-Heyrovsky mechanism. The values of exchange current density (i(o)) are in the range 1-10 mA cm(-2) for electrodes fabricated in the study. The a.c. impedance spectra measured at several potentials in the HER region showed a single semicircle in the Nyquist plots. Exchange current density (i(o)) and energy transfer coefficient (alpha) have been calculated by employing a nonlinear least square-fitting program.
Resumo:
We have developed a method, based on the use of B-spline basis sets and model potentials, for determining properties of systems with two or three electrons outside a polarizable closed-shell core. It is applied to the calculation of the electron affinity of Ca and the resulting value of 17.7 meV is in excellent agreement with the most recent experiments. It is found that the dielectronic core-valence interaction reduces the electron affinity by 39.5 meV.
Resumo:
Monte Carlo simulation and quantum mechanics calculations based on the INDO/CIS and TD-DFT methods were utilized to study the solvatochromic shift of benzophenone when changing the environment from normal water to supercritical (P = 340.2 atm and T = 673 K) condition. Solute polarization increases the dipole moment of benzophenone, compared to gas phase, by 88 and 35% in normal and supercritical conditions, giving the in-solvent dipole value of 5.8 and 4.2 D, respectively. The average number of solute-solvent hydrogen bonds was analyzed, and a large decrease of 2.3 in normal water to only 0.8 in the supercritical environment was found. By using these polarized models of benzophenone in the two different conditions of water, we performed MC simulations to generate statistically uncorrelated configurations of the solute surrounded by the solvent molecules and subsequent quantum mechanics calculations on these configurations. When changing from normal to supercritical water environment, INDO/CIS calculations explicitly considering all valence electrons of the 235 solvent water molecules resulted in a solvatochromic shift of 1425 cm(-1) for the most intense transition of benzophenone, that is, slightly underestimated in comparison with the experimentally inferred result of 1700 cm(-1). TD-B3LYP/6-311+G(2d,p) calculations on the same configurations but with benzophenone electrostatically embedded in the 320 water molecules resulted in a solvatochromic shift of 1715 cm(-1) for this transition, in very good agreement with the experimental result. When using the unpolarized model of the benzophenone, this calculated solvatochromic shift was only 640 cm(-1). Additional calculations were also made by using BHandHLYP/6-311+G(2d,p) to analyze the effect of the asymptotic decay of the exchange functional. This study indicates that, contrary to the general expectation, there is a sizable solute polarization even in the low-density regime of supercritical condition and that the inclusion of this polarization is important for a reliable description of the spectral shifts considered here.
Resumo:
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at similar to 0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A more direct and efficient route to the syntheses of [Ru(NH3)(4)(X-Y)](BF4)(2), where X-Y can be 2-acetylpyridine (2-acpy) or 2-benzoylpyridine (2-bzpy), based on the reactions of [RuCl(NH3)(5)]Cl-2 with these ortho-substituted azines is described. The [Ru(2-acpy)(NH3)(4)](BF4)(2) and [Ru(NH3)(5)(2-bzpy)](BF4)(2) complexes have a molar conductance of 328 and 292 Ohm(-1) cm(2) mol(-1), respectively, corresponding to a 1:2 species in solution. These complexes showed two intense absorption bands around 620-650 and 380 nm, the energies of which are solvent dependent, decreasing with the increase of the Gutman's donor number of the solvent, and were assigned as metal-to-ligand charge transfer (MLCT). The complexes have oxidation potentials (Ru-II/III) of +0.380 V vs. Ag/AgCl (2-acpy) and +0.400 V vs. Ag/AgCl (2-bzpy), and reduction potentials (X-Y0/-) of -1.10 V vs. Ag/AgCl (2-acpy) and -0.950 V vs. Ag/AgCl (2-bzpy) on CF3COOH/NaCF3COO at pH=3.0, scan rate 100 mV s(-1), [Ru]=1.0x10(-3) mol l(-1). Both processes show a coupled chemical reaction. Upon oxidation of the metal center, the MLCT absorption bands are bleached and restored upon subsequent reduction. In order to confirm the structure of the complexes a detailed LH NMR investigation was performed in d(6)-acetone. Further confirmation of the structure was obtained by recording the N-15 NMR spectrum of [Ru(NH3)(4)(2-bzpy)](2+) in d(6)-DMSO using the INEPT pulse sequence improving the sensitivity of N-15 by polarization transfer from the protons to the N-15. The Nuclear Overhauser Effect (NOE) experiments were made qualitatively for [Ru(NH3)(4)(2-acpy)](2+), and showed that H-6 of the pyridine is close to a NH3 proton, which should then be in a cis position, and, hence, confirming that acpy is acting as a bidentate ligand. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Gonodactyloid stomatopod crustaceans possess polarization vision, which enables them to discriminate light of different e-vector angle. Their unusual apposition compound eyes are divided by an equatorial band of six rows of enlarged, structurally modified ommatidia, the mid-band (MB). The rhabdoms of the two most ventral MB rows 5 and 6 are structurally designed for polarization vision. Here we show, with electrophysiological recordings, that the photoreceptors R1-R7 within these two MB rows in Gonodactylus chiragra are highly sensitive to linear polarized light of two orthogonal directions (PS=6.1). They possess a narrow spectral sensitivity peaking at 565 nm. Unexpectedly, photoreceptors within the distal rhabdomal tier of MB row 2 also possess highly sensitive linear polarization receptors, which are in their spectral and polarization characteristics similar to the receptors of MB rows 5 and 6. Photoreceptors R1-R7 within the remainder of the MB exhibit low polarization sensitivity (PS=2.3). Outside the MB, in the two hemispheres, R1-R7 possess medium linear polarization sensitivity (PS=3.8) and a broad spectral sensitivity peaking at around 500 nm, typical for most crustaceans. Throughout the retina the most distally situated UV-sensitive R8 cells are not sensitive to linear polarized light.