610 resultados para pneumatic dryer
Resumo:
The objective of this research project was to study the drying of soymilk residue in a pneumatic flash dryer, using response Surface Methodology (RSM), and to evaluate the quality of the dried residue. Soymilk residue, also known as okara, was provided by a Brazilian soymilk factory. RSM showed that for a 120 second drying cycle, the lower the residue moisture contents (y) obtained, the higher the recirculation rates (x1), regardless of the air drying temperature (x2), and it could be expressed by the equation y = 7.072 - 7.92x1, with R² = 92,92%. It is possible to obtain okara with 10% of moisture (dwb) under the condition x1=1.25, equivalent to RR = 61%, with air drying temperatures ranging from 252 °C to 308 °C. The dried okara obtained through Central Compound Rotational Design (CCRD) presented a centesimal composition similar to the okara dried in a tray dryer, known as the original okara. There were significant variations (p < 0.05) in the Emulsifying Capacity (EC), Emulsion Stability (ES) and Protein Solubility (PS) between the dehydrated residues obtained. It was concluded that the flash drying of okara is technically feasible and that the physicochemical composition of the residue was not altered; on the contrary, the process promoted a positive effect on the technological functional properties.
Resumo:
The addition of okara flour to an emulsified meat product (Frankfurter type sausage) was evaluated based on the physical, chemical, technological, and sensory characteristics of the final product. Okara, residue from soymilk production, was provided by two soymilk producing companies whose production systems were based on the hot disintegration of the decorticated (company B) or undecorticated (company A) soybeans. The okara was dehydrated using a flash dryer and then ground into flour (>420 µm). However, The okara flours A and B showed approximately the same amount of protein (35 and 40 g.100 g-1 dwb). However, the okara flour A presented higher values (p < 0.05) for all technological functional properties studied (emulsification capacity, emulsion stability, protein solubility, and water hold capacity) than those of okara flour B. The A and B okara flours were used in a frankfurter sausage formulation as substitution of 1.5% and 4% of meat. The results showed that the sausages containing okara flours A and B, as well as the control sausage, were accepted by the sensory panel. Moreover, there were no significant differences (p < 0.05) in the physical (color, objective texture, and emulsion stability) and chemical (pH and proximate composition) measurements of the sausages with and without the okara flour.
Resumo:
In this work, a pneumatic dryer has been designed and assembled in laboratory scale in order to study and evaluate configurations more efficient for application in drying of important materials of Northeast region in Brazil. The equipment was tested with drying of corn and rice grains, in conditions of temperature and air velocity at 80 oC and 35 m/s, respectively. For this type of dryer, it is recommended to work at temperatures above 200 °C and air velocity with higher dynamic pressure. However, even under operating conditions below what it is recommended, the results obtained with the pneumatic dryer were satisfactory. In addition, experiments of drying were performed by using a cabinet dryer (batch dryer) under the same conditions used in the pneumatic dryer. Flash one curves for the corn were fitted satisfactorily by applying of the Lewis model, while a better agreement was found for rice by using the Page model. The data obtained with both drying processes allowed to compare the performance between pneumatic and batch dryers. In respect to drying rate, the pneumatic dryer presented a similar performance to the batch dryer during processing with corn and a superior performance to the last one during processing with rice. Therefore, it was possible to verify that the pneumatic dryer assembled in this preliminar study can be applied for different materials and under different operating conditions
Resumo:
The residence time distribution and mean residence time of a 10% sodium bicarbonate solution that is dried in a conventional spouted bed with inert bodies were measured with the stimulus-response method. Methylene blue was used as a chemical tracer, and the effects of the paste feed mode, size distribution of the inert bodies, and mean particle size on the residence times and dried powder properties were investigated. The results showed that the residence time distributions could be best reproduced with the perfect mixing cell model or N = 1 for the continuous stirred tank reactor in a series model. The mean residence times ranged from 6.04 to 12.90 min and were significantly affected by the factors studied. Analysis of variance on the experimental data showed that mean residence times were affected by the mean diameter of the inert bodies at a significance level of 1% and by the size distribution at a level of 5%. Moreover, altering the paste feed from dripping to pneumatic atomization affected mean residence time at a 5% significance level. The dried powder characteristics proved to be adequate for further industrial manipulation, as demonstrated by the low moisture content, narrow range of particle size, and good flow properties. The results of this research are significant in the study of the drying of heat-sensitive materials because it shows that by simultaneously changing the size distribution and average size of the inert bodies, the mean residence times of a paste can be reduced by half, thus decreasing losses due to degradation.
Resumo:
O objectivo desta tese é dimensionar um secador em leito fluidizado para secagem de cereais, nomeadamente, secagem de sementes de trigo. Inicialmente determinaram-se as condições de hidrodinâmica (velocidade de fluidização, TDH, condições mínimas de “slugging”, expansão do leito, dimensionamento do distribuidor e queda de pressão). Com as condições de hidrodinâmica definidas, foi possível estimar as dimensões físicas do secador. Neste ponto, foram realizados estudos relativamente à cinética da secagem e à própria secagem. Foi também estudado o transporte pneumático das sementes. Deste modo, determinaram-se as velocidades necessárias ao transporte pneumático e respectivas quedas de pressão. Por fim, foi realizada uma análise custos para que se soubesse o custo deste sistema de secagem. O estudo da secagem foi feito para uma temperatura de operação de 50ºC, tendo a ressalva que no limite se poderia trabalhar com 60ºC. A velocidade de operação é de 2,43 m/s, a altura do leito fixo é de 0,4 m, a qual sofre uma expansão durante a fluidização, assumindo o valor de 0,79 m. O valor do TDH obtido foi de 1,97 m, que somado à expansão do leito permite obter uma altura total da coluna de 2,76 m. A altura do leito fixo permite retirar o valor do diâmetro que é de 0,52 m. Verifica-se que a altura do leito expandido é inferior à altura mínima de “slugging” (1,20 m), no entanto, a velocidade de operação é superior à velocidade mínima de “slugging” (1,13 m/s). Como só uma das condições mínimas é cumprida, existe a possibilidade da ocorrência de “slugging”. Finalmente, foi necessário dimensionar o distribuidor, que com o diâmetro de orifício de 3 mm, valor inferior ao da partícula (3,48 mm), permite a distruibuição do fluido de secagem na coluna através dos seus 3061 orifícios. O inicio do estudo da secagem centrou-se na determinação do tempo de secagem. Além das duas temperaturas atrás referidas, foram igualmente consideradas duas humidades iniciais para os cereais (21,33% e 18,91%). Temperaturas superiores traduzem-se em tempos de secagem inferiores, paralelamente, teores de humidade inicial inferiores indicam tempos menores. Para a temperatura de 50ºC, os tempos de secagem assumiram os valores de 2,8 horas para a 21,33% de humidade e 2,7 horas para 18,91% de humidade. Foram também tidas em conta três alturas do ano para a captação do ar de secagem, Verão e Inverno representando os extremos, e a Meia- Estação. Para estes três casos, foi possível verificar que a humidade específica do ar não apresenta alterações significativas entre a entrada no secador e a corrente de saída do mesmo equipamento, do mesmo modo que a temperatura de saída pouco difere da de entrada. Este desvio de cerca de 1% para as humidades e para as temperaturas é explicado pela ausência de humidade externa nas sementes e na pouca quantidade de humidade interna. Desta forma, estes desvios de 1% permitem a utilização de uma razão de reciclagem na ordem dos 100% sem que o comportamento da secagem se altere significativamente. O uso de 100% de reciclagem permite uma poupança energética de cerca de 98% no Inverno e na Meia-Estação e de cerca de 93% no Verão. Caso não fosse realizada reciclagem, seria necessário fornecer à corrente de ar cerca de 18,81 kW para elevar a sua temperatura de 20ºC para 50ºC (Meia-Estação), cerca de 24,67 kW para elevar a sua temperatura de 10ºC para 50ºC (Inverno) e na ordem dos 8,90 kW para elevar a sua temperatura dos 35ºC para 50ºC (Verão). No caso do transporte pneumático, existem duas linhas, uma horizontal e uma vertical, logo foi necessário estimar o valor da velocidade das partículas para estes dois casos. Na linha vertical, a velocidade da partícula é cerca de 25,03 m/s e cerca de 35,95 m/s na linha horizontal. O menor valor para a linha vertical prende-se com o facto de nesta zona ter que se vencer a força gravítica. Em ambos os circuitos a velocidade do fluido é cerca de 47,17 m/s. No interior da coluna, a velocidade do fluido tem o valor de 10,90 m/s e a velocidade das partículas é de 1,04 m/s. A queda de pressão total no sistema é cerca de 2408 Pa. A análise de custos ao sistema de secagem indicou que este sistema irá acarretar um custo total (fabrico mais transporte) de cerca de 153035€. Este sistema necessita de electricidade para funcionar, e esta irá acarretar um custo anual de cerca de 7951,4€. Embora este sistema de secagem apresente a possibilidade de se realizar uma razão de reciclagem na ordem dos 100% e também seja possível adaptar o mesmo para diferentes tipos de cereais, e até outros tipos de materiais, desde que possam ser fluidizados, o seu custo impede que a realização deste investimento não seja atractiva, especialmente tendo em consideração que se trata de uma instalação à escala piloto com uma capacidade de 45 kgs.
Resumo:
Currently excessive fossil fuel consumption has become a serious problem. People are searching for new solutions of energy production and there are several options to obtain alternative sources of energy without further devastating the already destroyed environment. One of these solutions is growing microalgae, from which biodiesel can be obtained. The microalgae production is a growing business because of its many useful compounds. In order to collect these compounds microalgae must first be harvested and then dried. Nowadays the solutions used for drying use too much energy and therefore are too expensive and not sustainable. The goal of this project, one of the possible choices during the EPS@ISEP 2013 Spring, was to develop a solar microalgae dryer. The multinational team involved in its development was composed of five students, from distinct countries and fields of study, and was the responsible for designing a solar microalgae dryer prototype for the microalgae laboratory of the chemical engineering department at ISEP, suitable for future tests and incorporating control process (in order not to destroy the microalgae during the drying process). The solar microalgae dryer was built to work as a distiller that gets rid of the excess water from the microalgae suspension. This paper presents a possible solution for this problem, the steps to create the device to harvest the microalgae by drying them with the use of solar energy (also used as an energy source for the solar dryer control system), the technologies used to build the solar microalgae dryer, and the benefits it presents compared to current solutions. It also presents the device from the ethical and sustainable viewpoint. Such alternative to already existing methods is competitive as far as energy usage is concerned.
Resumo:
The development of nations depends on energy consumption, which is generally based on fossil fuels. This dependency produces irreversible and dramatic effects on the environment, e.g. large greenhouse gas emissions, which in turn cause global warming and climate changes, responsible for the rise of the sea level, floods, and other extreme weather events. Transportation is one of the main uses of energy, and its excessive fossil fuel dependency is driving the search for alternative and sustainable sources of energy such as microalgae, from which biodiesel, among other useful compounds, can be obtained. The process includes harvesting and drying, two energy consuming steps, which are, therefore, expensive and unsustainable. The goal of this EPS@ISEP Spring 2013 project was to develop a solar microalgae dryer for the microalgae laboratory of ISEP. A multinational team of five students from distinct fields of study was responsible for designing and building the solar microalgae dryer prototype. The prototype includes a control system to ensure that the microalgae are not destroyed during the drying process. The solar microalgae dryer works as a distiller, extracting the excess water from the microalgae suspension. This paper details the design steps, the building technologies, the ethical and sustainable concerns and compares the prototype with existing solutions. The proposed sustainable microalgae drying process is competitive as far as energy usage is concerned. Finally, the project contributed to increase the deontological ethics, social compromise skills and sustainable development awareness of the students.
Resumo:
Selostus: Yrttien ja vihannesten infrapunakuivaus rumpukuivurissa
Resumo:
The caja (Spondias mombin L.) is used in the manufacture of ice-cream, jams, pulps, beverages being also consumed in natura. One of the most important procedures in food conservation is drying, considering that most fresh fruits contain approximately 80% of water. Food drying is used to obtain two basic aspects: (1) the economic factor; in the shipping and handling of the product; (2) at the manipulation; once dried and grinded, the material is rehydrated, at desirable levels, to formulate a new product as in ice cream, jams, yoghurts and drinks and may also be added to pasta, biscuits and other industrialized products. The aim of this study was to investigate the kinetics of caja bagasse drying in a fixed-bed tray dryer, using central composite factorial planning. The following factors were evaluated: temperature (55, 65 and 75 ºC), dryer inlet air velocity (3.2, 4.6 and 6.0 m.s-1) and cake thickness (0.8, 1.2 and 1.6 cm) where the response of the considered variable was caja bagasse moisture content (b.s.) and the results showed that the main effects and their interactions were significant at a 95% confidence level being the best condition obtained at temperature of 75 ºC, velocity of 6.0 m.s-1 and cake thickness of 0.8 cm.
Resumo:
Studies regarding the field of this work aim to substitute industrial mechanical conveyors with pneumatic conveyors to overcome the disadvantages in solids flow regulation and risks posed to production and health. The experimental part of this work examines how the granular material properties, fluidizing airflow rate, equipment geometry, and pressures along the pipes affect the mass flow rate through the system. The results are compared with those obtained from previous experiments conducted with alumina. Experiments were carried out with a pilot scale downer-riser system at Outotec Research Center Frankfurt. Granular materi-als used in this work are named as sand, ilmenite, iron ore 1 and iron ore 2.
Resumo:
The objective of the thesis was to examine the possibilities in designing better performing nozzles for the heatset drying oven in Forest Pilot Center. To achieve the objective, two predesigned nozzle types along with the replicas of the current nozzles in the heatset drying oven were tested on a pilot-scale dryer. During the runnability trials, the pilot dryer was installed between the last printing unit and the drying oven. The two sets of predesigned nozzles were consecutively installed in the dryer. Four web tension values and four different impingement air velocities were used and the web behavior during the trial points was evaluated and recorded. The runnability in all trial conditions was adequate or even good. During the heat transfer trials, each nozzle type was tested on at least two different nozzle-to-surface distances and four different impingement air velocities. In a test situation, an aluminum plate fitted with thermocouples was set below a nozzle and the temperature measurement of each block was logged. From the measurements, a heat transfer coefficient profile for the nozzle was calculated. The performance of each nozzle type in tested conditions could now be rated and compared. The results verified that the predesigned simpler nozzles were better than the replicas. For runnability reasons, there were rows of inclined orifices on the leading and trailing edges of the current nozzles. They were believed to deteriorate the overall performance of the nozzle, and trials were conducted to test this hypothesis. The perpendicular orifices and inclined orifices of a replica nozzle were consecutively taped shut and the performance of the modified nozzles was measured as before, and then compared to the performance of the whole nozzle. It was found out, that after a certain nozzle-to-surface distance the jets from the two nozzles would collide, which deteriorates the heat transfer.
Resumo:
The spray-drying technique has been widely used for drying heat-sensitive foods, pharmaceuticals, and other substances, because it leads to rapid solvent evaporation from droplets. This method involves the transformation of a feed from a fluid state into a dried particulate, by spraying the feed into a hot medium. Despite being most often considered a dehydration process, spray drying can also be used as an encapsulation method. Therefore, this work proposes the use of a simple and low-cost ultrasonic spray dryer system to produce spherical microparticles. This equipment was successfully applied to the preparation of dextrin microspheres on a laboratory scale and for academic purposes.
Resumo:
This work objectified to evaluate the efficiency of two meter mechanism of corn seeds when submitted to different forward speed and soil management system during the non-tillage seeding. It was used a factorial design in randomized blocks. The factors whose effects were examined were related to the seeders with pneumatic and horizontal disk meter mechanisms for the distribution of the seeds, to the set tractor-seeder forward speeds (4.4; 8.0 and 9.8 km h-1), and to the soil management system considering the corn no-tillage seeding over minimum tillage with chisel plow and the no-tillage system for the seeding of oat culture (Avena strigosa Schreb). It was verified that the forward speed didn't influence the initial and final stands of plants but it interfered in the regularity of longitudinal distribution of plants. The smallest speed provided the largest percentile of normal spacing between plants. The pneumatic meter mechanism presented better performance than the horizontal disk perforated in the longitudinal distribution of plants. About corn productivity aspect it's indifferent the recommendation of use for pneumatic and perforated horizontal disk meter mechanism of seeds.
Resumo:
Este trabalho avaliou o comportamento do agente encapsulante beta -ciclodextrina ( beta-CD) adicionado ao leite de cabra submetido ao processo de desidratação por "spray-dryer", através de análise termogravimétrica e de cromatografia gasosa. Após a desidratação, a amostra adicionada de beta-CD apresentou um rendimento real de 10,59% com taxa de perda de 0,04% (em relação ao valor teórico esperado 10,6% ); enquanto na amostra sem adição do agente encapsulante o rendimento real foi de 9,57%, com taxa de perda de 4,27% (valor teórico esperado 10% ). Através da análise termogravimétrica (TGA), verificou-se que são volatilizados 44% e 21% dos ácidos comerciais C8 e C10 , respectivamente. Os resultados cromatográficos mostraram uma perda de aproximadamente 30% dos ácidos C8 e 20% dos ácidos C10 , nas amostras de leite de cabra sem beta -CD em relação às amostras com beta-CD. Tais porcentagens estão de acordo com os valores estimados para os ácidos comerciais. Com base nos parâmetros estudados, podemos inferir que há menor perda dos ácidos graxos C8 e C10 na amostra de leite de cabra com beta-CD, provavelmente devido ao efeito encapsulante, aumentando a estabilidade térmica dos ácidos.