164 resultados para plotting
Resumo:
Stratigraphic Columns (SC) are the most useful and common ways to represent the eld descriptions (e.g., grain size, thickness of rock packages, and fossil and lithological components) of rock sequences and well logs. In these representations the width of SC vary according to the grain size (i.e., the wider the strata, the coarser the rocks (Miall 1990; Tucker 2011)), and the thickness of each layer is represented at the vertical axis of the diagram. Typically these representations are drawn 'manually' using vector graphic editors (e.g., Adobe Illustrator®, CorelDRAW®, Inskape). Nowadays there are various software which automatically plot SCs, but there are not versatile open-source tools and it is very di cult to both store and analyse stratigraphic information. This document presents Stratigraphic Data Analysis in R (SDAR), an analytical package1 designed for both plotting and facilitate the analysis of Stratigraphic Data in R (R Core Team 2014). SDAR, uses simple stratigraphic data and takes advantage of the exible plotting tools available in R to produce detailed SCs. The main bene ts of SDAR are: (i) used to generate accurate and complete SC plot including multiple features (e.g., sedimentary structures, samples, fossil content, color, structural data, contacts between beds), (ii) developed in a free software environment for statistical computing and graphics, (iii) run on a wide variety of platforms (i.e., UNIX, Windows, and MacOS), (iv) both plotting and analysing functions can be executed directly on R's command-line interface (CLI), consequently this feature enables users to integrate SDAR's functions with several others add-on packages available for R from The Comprehensive R Archive Network (CRAN).
Resumo:
The overall system is designed to permit automatic collection of delamination field data for bridge decks. In addition to measuring and recording the data in the field, the system provides for transferring the recorded data to a personal computer for processing and plotting. This permits rapid turnaround from data collection to a finished plot of the results in a fraction of the time previously required for manual analysis of the analog data captured on a strip chart recorder. In normal operation the Delamtect provides an analog voltage for each of two channels which is proportional to the extent of any delamination. These voltages are recorded on a strip chart for later visual analysis. An event marker voltage, produced by a momentary push button on the handle, is also provided by the Delamtect and recorded on a third channel of the analog recorder.
Resumo:
The root-locus method is a well-known and commonly used tool in control system analysis and design. It is an important topic in introductory undergraduate engineering control disciplines. Although complementary root locus (plant with negative gain) is not as common as root locus (plant with positive gain) and in many introductory textbooks for control systems is not presented, it has been shown a valuable tool in control system design. This paper shows that complementary root locus can be plotted using only the well-known construction rules to plot root locus. It can offer for the students a better comprehension on this subject. These results present a procedure to avoid problems that appear in root-locus plots for plants with the same number of poles and zeros.
Resumo:
Graphical presentation of regression results has become increasingly popular in the scientific literature, as graphs are much easier to read than tables in many cases. In Stata such plots can be produced by the -marginsplot- command. However, while -marginsplot- is very versatile and flexible, it has two major limitations: it can only process results left behind by -margins- and it can only handle one set of results at the time. In this article I introduce a new command called -coefplot- that overcomes these limitations. It plots results from any estimation command and combines results from several models into a single graph. The default behavior of -coefplot- is to plot markers for coefficients and horizontal spikes for confidence intervals. However, -coefplot- can also produce various other types of graphs. The capabilities of -coefplot- are illustrated in this article using a series of examples.
Resumo:
Graphical display of regression results has become increasingly popular in presentations and in scientific literature because graphs are often much easier to read than tables. Such plots can be produced in Stata by the marginsplot command (see [R] marginsplot). However, while marginsplot is versatile and flexible, it has two major limitations: it can only process results left behind by margins (see [R] margins), and it can handle only one set of results at a time. In this article, I introduce a new command called coefplot that overcomes these limitations. It plots results from any estimation command and combines results from several models into one graph. The default behavior of coefplot is to plot markers for coefficients and horizontal spikes for confidence intervals. However, coefplot can also produce other types of graphs. I illustrate the capabilities of coefplot by using a series of examples.
Resumo:
See addenda at end of item.
Resumo:
Mode of access: Internet.
Resumo:
"June 1971."
Resumo:
"April 1966."
Resumo:
"Met.0.877."
Resumo:
Size distributions in woody plant populations have been used to assess their regeneration status, assuming that size structures with reverse-J shapes represent stable populations. We present an empirical approach of this issue using five woody species from the Cerrado. Considering count data for all plants of these five species over a 12-year period, we analyzed size distribution by: a) plotting frequency distributions and their adjustment to the negative exponential curve and b) calculating the Gini coefficient. To look for a relationship between size structure and future trends, we considered the size structures from the first census year. We analyzed changes in number over time and performed a simple population viability analysis, which gives the mean population growth rate, its variance and the probability of extinction in a given time period. Frequency distributions and the Gini coefficient were not able to predict future trends in population numbers. We recommend that managers should not use measures of size structure as a basis for management decisions without applying more appropriate demographic studies.