975 resultados para plastic hinge method
Resumo:
Composite steel-concrete structures experience non-linear effects which arise from both instability-related geometric non-linearity and from material non-linearity in all of their component members. Because of this, conventional design procedures cannot capture the true behaviour of a composite frame throughout its full loading range, and so a procedure to account for those non-linearities is much needed. This paper therefore presents a numerical procedure capable of addressing geometric and material non-linearities at the strength limit state based on the refined plastic hinge method. Different material non-linearity for different composite structural components such as T-beams, concrete-filled tubular (CFT) and steel-encased reinforced concrete (SRC) sections can be treated using a routine numerical procedure for their section properties in this plastic hinge approach. Simple and conservative initial and full yield surfaces for general composite sections are proposed in this paper. The refined plastic hinge approach models springs at the ends of the element which are activated when the surface defining the interaction of bending and axial force at first yield is reached; a transition from the first yield interaction surface to the fully plastic interaction surface is postulated based on a proposed refined spring stiffness, which formulates the load-displacement relation for material non-linearity under the interaction of bending and axial actions. This produces a benign method for a beam-column composite element under general loading cases. Another main feature of this paper is that, for members containing a point of contraflexure, its location is determined with a simple application of the method herein and a node is then located at this position to reproduce the real flexural behaviour and associated material non-linearity of the member. Recourse is made to an updated Lagrangian formulation to consider geometric non-linear behaviour and to develop a non-linear solution strategy. The formulation with the refined plastic hinge approach is efficacious and robust, and so a full frame analysis incorporating geometric and material non-linearity is tractable. By way of contrast, the plastic zone approach possesses the drawback of strain-based procedures which rely on determining plastic zones within a cross-section and which require lengthwise integration. Following development of the theory, its application is illustrated with a number of varied examples.
Resumo:
Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A refined plastic hinge method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in a companion paper. The method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established in this paper by comparison with a comprehensive range of analytical benchmark frame solutions. The refined plastic hinge method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.
Resumo:
In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.
Resumo:
This paper emphasizes material nonlinear effects on composite beams with recourse to the plastic hinge method. Numerous combinations of steel and concrete sections form arbitrary composite sections. Secondly, the material properties of composite beams vary remarkably across its section from ductile steel to brittle concrete. Thirdly, concrete is weak in tension, so composite section changes are dependent on load distribution. To this end, the plastic zone approach is convenient for inelastic analysis of composite sections that can evaluate member resistance, including material nonlinearities, by routine numerical integration with respect to every fiber across the composite section. As a result, many researchers usually adopt the plastic zone approach for numerical inelastic analyses of composite structures. On the other hand, the plastic hinge method describes nonlinear material behaviour of an overall composite section integrally. Consequently, proper section properties for use in plastic hinge spring stiffness are required to represent the material behaviour across the arbitrary whole composite section. In view of numerical efficiency and convergence, the plastic hinge method is superior to the plastic zone method. Therefore, based on the plastic hinge approach, how to incorporate the material nonlinearities of the arbitrary composite section into the plastic hinge stiffness formulation becomes a prime objective of the present paper. The partial shear connection in this paper is by virtue of the effective flexural rigidity as AISC 1993 [American Institute of Steel Construction (AISC). Load and resistance factor design specifications. 2nd ed., Chicago; 1993]. Nonlinear behaviour of different kinds of composite beam is investigated in this paper, including two simply supported composite beams, a cantilever and a two span continuous composite beam.
Resumo:
This paper addresses of the advanced computational technique of steel structures for both simulation capacities simultaneously; specifically, they are the higher-order element formulation with element load effect (geometric nonlinearities) as well as the refined plastic hinge method (material nonlinearities). This advanced computational technique can capture the real behaviour of a whole second-order inelastic structure, which in turn ensures the structural safety and adequacy of the structure. Therefore, the emphasis of this paper is to advocate that the advanced computational technique can replace the traditional empirical design approach. In the meantime, the practitioner should be educated how to make use of the advanced computational technique on the second-order inelastic design of a structure, as this approach is the future structural engineering design. It means the future engineer should understand the computational technique clearly; realize the behaviour of a structure with respect to the numerical analysis thoroughly; justify the numerical result correctly; especially the fool-proof ultimate finite element is yet to come, of which is competent in modelling behaviour, user-friendly in numerical modelling and versatile for all structural forms and various materials. Hence the high-quality engineer is required, who can confidently manipulate the advanced computational technique for the design of a complex structure but not vice versa.
Resumo:
Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.
Resumo:
Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity formulation suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. This formulation, referred to as the refined plastic hinge method, implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling.
Resumo:
The computational technique of the full ranges of the second-order inelastic behaviour evaluation of steel-concrete composite structure is not always sought forgivingly, and therefore it hinders the development and application of the performance-based design approach for the composite structure. To this end, this paper addresses of the advanced computational technique of the higher-order element with the refined plastic hinges to capture the all-ranges behaviour of an entire steel-concrete composite structure. Moreover, this paper presents the efficient and economical cross-section analysis to evaluate the element section capacity of the non-uniform and arbitrary composite section subjected to the axial and bending interaction. Based on the same single algorithm, it can accurately and effectively evaluate nearly continuous interaction capacity curve from decompression to pure bending technically, which is the important capacity range but highly nonlinear. Hence, this cross-section analysis provides the simple but unique algorithm for the design approach. In summary, the present nonlinear computational technique can simulate both material and geometric nonlinearities of the composite structure in the accurate, efficient and reliable fashion, including partial shear connection and gradual yielding at pre-yield stage, plasticity and strain-hardening effect due to axial and bending interaction at post-yield stage, loading redistribution, second-order P-δ and P-Δ effect, and also the stiffness and strength deterioration. And because of its reliable and accurate behavioural evaluation, the present technique can be extended for the design of the high-strength composite structure and potentially for the fibre-reinforced concrete structure.
Resumo:
After the experience gained during the past years it seems clear that nonlinear analysis of bridges are very important to compute ductility demands and to localize potential hinges. This is specially true for irregular bridges in which it is not clear weather or not it is possible to use a linear computation followed by a correction using a behaviour factor. To simplify the numerical effort several approximate methods have been proposed. Among them, the so-called Dynamic Plastic Hinge Method in which an evolutionary shape function is used to reduce the structure to a single degree of freedom system seems to mantein a good balance between accuracy and simplicity. This paper presents results obtained in a parametric study conducted under the auspicies of PREC-8 european research program.
Resumo:
During the past decade, a significant amount of research has been conducted internationally with the aim of developing, implementing, and verifying "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures. Application of these methods permits comprehensive assessment of the actual failure modes and ultimate strengths of structural systems in practical design situations, without resort to simplified elastic methods of analysis and semi-empirical specification equations. Advanced analysis has the potential to extend the creativity of structural engineers and simplify the design process, while ensuring greater economy and more uniform safety with respect to the ultimate limit state. The application of advanced analysis methods has previously been restricted to steel frames comprising only members with compact cross-sections that are not subject to the effects of local buckling. This precluded the use of advanced analysis from the design of steel frames comprising a significant proportion of the most commonly used Australian sections, which are non-compact and subject to the effects of local buckling. This thesis contains a detailed description of research conducted over the past three years in an attempt to extend the scope of advanced analysis by developing methods that include the effects of local buckling in a non-linear analysis formulation, suitable for practical design of steel frames comprising non-compact sections. Two alternative concentrated plasticity formulations are presented in this thesis: the refined plastic hinge method and the pseudo plastic zone method. Both methods implicitly account for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the methods for the analysis of steel frames comprising non-compact sections has been established by comparison with a comprehensive range of analytical benchmark frame solutions. Both the refined plastic hinge and pseudo plastic zone methods are more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations. For example, the pseudo plastic zone method predicts the ultimate strength of the analytical benchmark frames with an average conservative error of less than one percent, and has an acceptable maximum unconservati_ve error of less than five percent. The pseudo plastic zone model can allow the design capacity to be increased by up to 30 percent for simple frames, mainly due to the consideration of inelastic redistribution. The benefits may be even more significant for complex frames with significant redundancy, which provides greater scope for inelastic redistribution. The analytical benchmark frame solutions were obtained using a distributed plasticity shell finite element model. A detailed description of this model and the results of all the 120 benchmark analyses are provided. The model explicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. Its accuracy was verified by comparison with a variety of analytical solutions and the results of three large-scale experimental tests of steel frames comprising non-compact sections. A description of the experimental method and test results is also provided.
Resumo:
A numerical procedure based on the plastic hinge concept for study of the structural behaviour of steel framed structures exposed to fire is described. Most previous research on fire analysis considered the structural performance due to rising temperature. When strain reversal occurs during the cooling phase, the stress–strain curve is different. The plastic deformation is incorporated into the stress–strain curve to model the strain reversal effect in which unloading under elastic behaviour is allowed. This unloading response is traced by the incremental–iterative Newton–Raphson method. The mechanical properties of the steel member in the present fire analysis follows both Eurocode 3 Part 1.2 and BS5950 Part 8, which implicitly allow for thermal creep deformation. This paper presents an efficient fire analysis procedure for predicting thermal and cooling effects on an isolated element and a multi-storey frame. Several numerical and experimental examples related to structural behaviour in cooling phase are studied and compared with results obtained by other researchers. The proposed method is effective in the fire safety design and analysis of a building in a real fire scenario. The scope of investigation is of great significance since a large number of rescuers would normally enter a fire site as soon as the fire is extinguished and during the cooling phase, so a structural collapse can be catastrophic.