6 resultados para plasmolysis
Resumo:
The mass transfer during osmotic dehydration of apple slices immersed in 40, 50 and 60% (w/w) aqueous sucrose solutions was investigated to evaluate the influence of solution concentration on diffusivities. In the mathematical model, the diffusion coefficients were functions of the local water and sucrose concentration. The mass transfer equations were, simultaneously, solved for water and sucrose using an implicit numerical method. Material coordinates following the shrinkage of the solid were used. The predicted concentration profiles were integrated and compared to experimental data, showing a reasonable agreement with the measured data. on average, the effective diffusion coefficients for water and sucrose decreased as the osmotic solution concentration increased; that is the behavior of the binary coefficients in water-sucrose solutions. However, the diffusivities expressed as a function of the local concentration in the slices varied between the treatments. Water diffusion coefficients showed a remarkable variation throughout the slice and unusual behavior, which was associated to the cellular structure changes observed in tissue immersed in osmotic solutions. Cell structure changes occurred in different ways: moderate plasmolysis at 40%, accentuated plasmolysis at 50% and generalized damage of the cells at 60%. Intact vacuoles were observed after a long time of exposure (30 h) to 40 and 50% solutions. Effects of the concentration on tissue changes make it difficult to generalize the behavior of diffusion coefficients.
Resumo:
The optimization of autolysis of Saccharomyces cerevisiae from brewery was studied aiming at the maximum ribonucleic acid extraction and yeast extract production. The best conditions for yeast autolysis was 55.2ºC, pH= 5.1 and 9.8% NaCl for 24h of processing, without the NH3 use. In these conditions, the RNA yield was 89.7%, resulting in 51.3% of dehydrated yeast extract with 57.9% protein. The use of 12.2% NH3 at 60ºC after autolysis (8h) and plasmolysis (8h) was not viable due to the reduction in the RNA yield from 89.7to78.4%. on the other hand, the thermal shock at 60ºC for 15 minutes prior to autolysis provided an increase in the yield from 89.7 to 91.4%. The autolysis, including NaCl plasmolysis in the optimized conditions was efficient, economic and with short time, thus usable for industrial purpose to obtain more valuable products such as yeast extract enriched in RNA and/or protein, for different applications.
Resumo:
The effect of the concentration of sucrose solutions on the cellular structure of potato tissue in equilibrium at 27 degreesC was Studied. Two different methods of investigation were used to determine the volume of the different phases composing the cellular tissue of the potato when in equilibrium with the solutions. one based on data of the concentration itself and the overall volume of 2 mm slices after 48 h at equilibrium, and the other on microscopic images of cells in thin slices of fresh tissue stained with neutral red after an hour in equilibrium to show protoplasts, vacuoles and plasmolysis spaces. The results of these methods were compared with those obtained by a predictive thermodynamic approach considering the semipermeability of cell membranes. Phase volume data obtained from microscopic analysis were more similar to what was predicted by the theoretical model than those obtained by means of composition measurement. where the long equilibrium time apparently led to the loss of semi permeability of the cell membranes, since total volumes calculated without consideration of the cell membranes were similar to those measured. This suggests that the length of time of osmotic dehydration brings about a change in cell structure and the consequent involvement of a different mechanism in mass transfer. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The movement of sensitive stamens in flowers of the Plains Prickly Pear (Opuntia polyacantha) is described in detail along with the external and internal filament anatomy. The goals of this investigation were: (1) to provide a synthesis of floral phenology and determine whether this rather unique stamen movement is nastic or a tropism and (2) to conduct macro- and micro-morphological analyses of filaments to determine if there are anatomical traits associated with this movement. To better understand the internal and external structure in sensitive filaments of O. polyacantha, we performed comparative anatomical analyses in two additional species from the Opuntioideae with stamens lacking such sensitivity. The consistent unidirectional movement of stamens, independent of the area stimulated, indicates a thigmonastic response. This movement serves multiple purposes, from enhancing pollen presentation to facilitating cross-pollination, protecting pollen and preventing insects from robbing pollen. Anatomically, the sensitive and non-sensitive filaments exhibit different tissue organization. Cuticle thickness, presence of capsular structures, two layers of curved cells, and more and larger intercellular spaces are characteristic of sensitive filaments. A thin unicellular epidermal layer is characteristic in sensitive filaments versus 2-3 epidermal layers in non-sensitive filaments. Another striking feature in sensitive filaments is the presence of papillae and capsular structures. We believe that these elements are related to water mobility with subsequent contraction during the thigmonastic response. Capsular structures might have a role in fluid mobility according to the stimulus of the filaments. We hypothesize that the thigmonastic response is controlled by cells with elastic properties, as evidenced by the plasmolyzed curved and contracted cells in the filaments and the fact that the movement is activated by changes in cell turgor followed by contraction as a result of plasmolysis. © 2013 Elsevier GmbH.
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)