994 resultados para plasma-lipoproteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Plasma lipids and lipoproteins of free-ranging howling monkeys from Costa Rica (Alouatta palliata), aged 5 months to 23 years, were characterized. 2. High density lipoproteins were lipid-rich, similar to HDL2 of human plasma. 3. Fatty acid compositions of major lipid classes of very low, low and high density lipoproteins differed among social groups, possibly due to both dietary and genetic factors. 4. Low and high density lipoprotein phospholipids were enriched in phosphatidylethanolamine. 5. Howler plasma cross reacted with antihuman apoA-I antibodies but not with antihuman LDL antibodies. 6. No dimeric form of apoA-II was present, unlike human apoA-II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: In nondiabetic pregnancy, cross-sectional studies have shown associations between maternal dyslipidemia and preeclampsia (PE). In type 1 diabetes mellitus (T1DM), the prevalence of PE is increased 4-fold, but prospective associations with plasma lipoproteins are unknown.

Objectives: The aim of this study was to define lipoprotein-related markers and potential mechanisms for PE in T1DM.

Design and Settings: We conducted a multicenter prospective study in T1DM pregnancy.

Patients: We studied 118 T1DM women (26 developed PE, 92 remained normotensive). Subjects were studied at three visits before PE onset [12.2 1.9, 21.6 1.5, and 31.5 1.7 wk gestation (means SD)] and at term (37.6 2.0 wk). Nondiabetic normotensive pregnant women (n 21) were included for reference.

Main Outcome Measures: Conventional lipid profiles, lipoprotein subclasses [defined by size (nuclear magnetic resonance) and by apolipoprotein content], serum apolipoproteins (ApoAI, ApoB, and ApoCIII), and lipolysis (ApoCIII ratio) were measured in T1DM women with and without subsequent PE.

Results: In women with vs. without subsequent PE, at the first and/or second study visits: lowdensity lipoprotein (LDL)-cholesterol, particle concentrations of total LDL and large (but not small) LDL, serum ApoB, and ApoB:ApoAI ratio were all increased (P 0.05); peripheral lipoprotein lipolysis was decreased (P0.01). These early differences remained significant in covariate analysis (glycated hemoglobin, actual prandial status, gravidity, body mass index, and diabetes duration) but were not present at the third study visit. High-density lipoprotein and very low-density lipoprotein subclasses did not differ between groups before PE onset.

Conclusions: Early in pregnancy, increased cholesterol-rich lipoproteins and an index suggesting decreased peripheral lipolysis were associated with subsequent PE in T1DM women. Background maternal lipoprotein characteristics, perhaps masked by effects of late pregnancy, may influence PE risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipoproteins are a heterogeneous population of blood plasma particles composed of apolipoproteins and lipids. Lipoproteins transport exogenous and endogenous triglycerides and cholesterol from sites of absorption and formation to sites of storage and usage. Three major classes of lipoproteins are distinguished according to their density: high-density (HDL), low-density (LDL) and very low-density lipoproteins (VLDL). While HDLs contain mainly apolipoproteins of lower molecular weight, the two other classes contain apolipoprotein B and apolipoprotein (a) together with triglycerides and cholesterol. HDL concentrations were found to be inversely related to coronary heart disease and LDL/VLDL concentrations directly related. Although many studies have been published in this area, few have concentrated on the exact protein composition of lipoprotein particles. Lipoproteins were separated by density gradient ultracentrifugation into different subclasses. Native gel electrophoresis revealed different gel migration behaviour of the particles, with less dense particles having higher apparent hydrodynamic radii than denser particles. Apolipoprotein composition profiles were measured by matrix-assisted laser desorption/ionization-mass spectrometry on a macromizer instrument, equipped with the recently introduced cryodetector technology, and revealed differences in apolipoprotein composition between HDL subclasses. By combining these profiles with protein identifications from native and denaturing polyacrylamide gels by liquid chromatography-tandem mass spectrometry, we characterized comprehensively the exact protein composition of different lipoprotein particles. We concluded that the differential display of protein weight information acquired by macromizer mass spectrometry is an excellent tool for revealing structural variations of different lipoprotein particles, and hence the foundation is laid for the screening of cardiovascular disease risk factors associated with lipoproteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anticardiolipin (anti-CL) antibodies, diagnostic for antiphospholipid antibody syndrome, are associated with increased risks of venous and arterial thrombosis. Because CL selectively enhances activated protein C/protein S-dependent anticoagulant activities in purified systems and because CL is not known to be a normal plasma component, we searched for CL in plasma. Plasma lipid extracts [chloroform/methanol (2:1, vol/vol)] were subjected to analyses by using TLC, analytical HPLC, and MS. A plasma lipid component was purified that was indistinguishable from reference CL (M:1448). When CL in 40 fasting plasma lipid extracts (20 males, 20 females) was quantitated by using HPLC, CL (mean ± SD) was 14.9 ± 3.7 μg/ml (range 9.1 to 24.2) and CL was not correlated with phosphatidylserine (3.8 ± 1.7 μg/ml), phosphatidylethanolamine (64 ± 20 μg/ml), or choline-containing phospholipid (1,580 ± 280 μg/ml). Based on studies of fasting blood donors, CL (≥94%) was recovered in very low density, low density, and high density lipoproteins (11 ± 5.3%, 67 ± 11.0%, and 17 ± 10%, respectively), showing that the majority of plasma CL (67%) is in low density lipoprotein. Analysis of relative phospholipid contents of lipoproteins indicated that high density lipoprotein is selectively enriched in CL and phosphatidylethanolamine. These results shows that CL is a normal plasma component and suggest that the epitopes of antiphospholipid antibodies could include CL or oxidized CL in lipoproteins or in complexes with plasma proteins (e.g., β2-glycoprotein I, prothrombin, protein C, or protein S) or with platelet or endothelial surface proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The very low density lipoprotein (VLDL) receptor is a recently cloned member of the low density lipoprotein (LDL) receptor family that mediates the binding and uptake of VLDL when overexpressed in animal cells. Its sequence is 94% identical in humans and rabbits and 84% identical in humans and chickens, implying a conserved function. Its high level expression in muscle and adipose tissue suggests a role in VLDL triacylglycerol delivery. Mutations in the chicken homologue cause female sterility, owing to impaired VLDL and vitellogenin uptake during egg yolk formation. We used homologous recombination in mouse embryonic stem cells to produce homozygous knockout mice that lack immunodetectable VLDL receptors. Homozygous mice of both sexes were viable and normally fertile. Plasma levels of cholesterol, triacylglycerol, and lipoproteins were normal when the mice were fed normal, high-carbohydrate, or high-fat diets. The sole abnormality detected was a modest decrease in body weight, body mass index, and adipose tissue mass as determined by the weights of epididymal fat pads. We conclude that the VLDL receptor is not required for VLDL clearance from plasma or for ovulation in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increases in plasma cholesterol are associated with progressive increases in the risk of atherosclerotic cardiovascular disease. In humans plasma cholesterol is contained primarily in apolipoprotein B-based low density lipoprotein (LDL). Cells stop making the high-affinity receptor responsible for LDL removal as they become cholesterol replete; this slows removal of LDL from plasma and elevates plasma LDL. As a result of this delayed uptake, hypercholesterolemic individuals not only have more LDL but have significantly older LDL. Oxidative modification of LDL enhances their atherogenicity. This study sought to determine whether increased time spent in circulation, or aging, by lipoprotein particles altered their susceptibility to oxidative modification. Controlled synchronous production of distinctive apolipoprotein B lipoproteins (yolk-specific very low density lipoproteins; VLDLy) with a single estrogen injection into young turkeys was used to model LDL aging in vivo. VLDLy remained in circulation for at least 10 days. Susceptibility to oxidation in vitro was highly dependent on lipoprotein age in vivo. Oxidation, measured as hexanal release from n-6 fatty acids in VLDLy, increased from 13.3 +/- 5.5 nmol of 2-day-old VLDLy per ml, to 108 +/- 17 nmol of 7-day-old VLDLy per ml. Oxidative instability was not due to tocopherol depletion or conversion to a more unsaturated fatty acid composition. These findings establish mathematically describable linkages between the variables of LDL concentration and LDL oxidation. The proposed mathematical models suggest a unified investigative approach to determine the mechanisms for acceleration of atherosclerotic cardiovascular disease risk as plasma cholesterol rises.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background Plasma lipases and lipid transfer proteins are involved in the generation and speciation of high density lipoproteins. In this study we have examined the influence of plasma lipases and lipid transfer protein activities on the transfer of free cholesterol (FC) and phospholipids (PL) from lipid emulsion to human, rat and mouse lipoproteins. The effect of the lipases was verified by incubation of labeled (3H-FC,14C-PL) triglyceride rich emulsion with human plasma (control, post-heparin and post-heparin plus lipase inhibitor), rat plasma (control and post-heparin) and by the injection of the labeled lipid emulsion into control and heparinized functionally hepatectomized rats. Results In vitro, the lipase enriched plasma stimulated significantly the transfer of 14C-PL from emulsion to high density lipoprotein (p<0.001) but did not modify the transfer of 3H-FC. In hepatectomized rats, heparin stimulation of intravascular lipolysis increased the plasma removal of 14C-PL and the amount of 14C-PL found in the low density lipoprotein density fraction but not in the high density lipoprotein density fraction. The in vitro and in vivo experiments showed that free cholesterol and phospholipids were transferred from lipid emulsion to plasma lipoproteins independently from each other. The incubation of human plasma, control and control plus monoclonal antibody anti-cholesteryl ester transfer protein (CETP), with 14C-PL emulsion showed that CETP increases 14C-PL transfer to human HDL, since its partial inhibition by the anti-CETP antibody reduced significantly the 14C-PL transfer (p<0.05). However, comparing the nontransgenic (no CETP activity) with the CETP transgenic mouse plasma, no effect of CETP on the 14C-PL distribution in mice lipoproteins was observed. Conclusions It is concluded that: 1-intravascular lipases stimulate phospholipid transfer protein mediated phospholipid transfer, but not free cholesterol, from triglyceride rich particles to human high density lipoproteins and rat low density lipoproteins and high density lipoproteins; 2-free cholesterol and phospholipids are transferred from triglyceride rich particles to plasma lipoproteins by distinct mechanisms, and 3 - CETP also contributes to phospholipid transfer activity in human plasma but not in transgenic mice plasma, a species which has high levels of the specific phospholipid transfer protein activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Clinical epidemiological studies have revealed relatively weak, yet statistically significant, associations between dyslipidemia/dyslipoproteinemia and diabetic retinopathy (DR). Recent large interventional studies, however, demonstrated an unexpectedly robust efficacy of fenofibrate on the development of DR, possibly independent of plasma lipids. To unify the apparent discrepancies, we hypothesize that plasma lipoproteins play an indirect but important role in DR, contingent on the integrity of the blood-retina-barrier (BRB). In retinas with an intact BRB, plasma lipoproteins may be largely irrelevant; however, important effects become operative after the BRB is impaired in diabetes, leading to lipoprotein extravasation and subsequent modification, hence toxicity to the neighbouring retinal cells. In this hypothesis, BRB leakage is the key, plasma lipoprotein concentrations mainly modulate its consequences, and fenofibrate has intra-retinal actions. This review summarizes our current knowledge of the direct effects and mechanisms of modified lipoproteins on retinal cells and their potential contribution to the pathogenesis of DR.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims/hypothesis: We aimed to determine whether plasma lipoproteins, after leakage into the retina and modification by glycation and oxidation, contribute to the development of diabetic retinopathy in a mouse model of type 1 diabetes.

Methods: To simulate permeation of plasma lipoproteins intoretinal tissues, streptozotocin-induced mouse models of diabetes and non-diabetic mice were challenged with intravitreal injection of human ‘highly-oxidised glycated’ low-density lipoprotein (HOG-LDL), native- (N-) LDL, or the vehicle PBS.Retinal histology, electroretinography (ERG) and biochemical markers were assessed over the subsequent 14 days.

Results: Intravitreal administration of N-LDL and PBS had noeffect on retinal structure or function in either diabetic or non-diabetic animals. In non-diabetic mice, HOG-LDL elicited a transient inflammatory response without altering retinal function,but in diabetic mice it caused severe, progressive retinal injury, with abnormal morphology, ERG changes, vascular leakage, vascular endothelial growth factor overexpression, gliosis, endoplasmic reticulum stress, and propensity to apoptosis.

Conclusions/interpretation: Diabetes confers susceptibility to retinal injury imposed by intravitreal injection of modified LDL. The data add to the existing evidence that extravasated, modified plasma lipoproteins contribute to the propagation of diabetic retinopathy. Intravitreal delivery of HOG-LDL simulates a stress known to be present, in addition to hyperglycaemia, in human diabetic retinopathy once blood retinal barriers are compromised.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective-Although physical activity is beneficial to health, people who exercise at high intensities throughout their lifetime may have increased cardiovascular risk. Aerobic exercise increases oxidative stress and may contribute to atherogenesis by augmented oxidation of plasma lipoproteins. The aim of this study was to examine the relationship between aerobic power and markers of oxidative stress, including the susceptibility of plasma to oxidation. Methods and results-Aerobic power was measured in 24 healthy men aged 29 9 years (mean +/- SD). Plasma was analysed from subjects of high aerobic power (HAP; VO(2)max, 64.6 +/- 6.1 ml/kg/min) and lower aerobic power (LAP;VO(2)max, 45.1 +/- 6.3 ml/kg/min) for total antioxidant capacity (TAC), malondialdehyde (MDA) and susceptibility to oxidation. Three measures were used to quantify plasma oxidizability: (1) lag time to conjugated diene formation (lag time); (2) change in absorbance at 234 nm and; (3) slope of the oxidation curve during propagation (slope). The HAP subjects had significantly lowerTAC (1.38 +/- 0.04 versus 1.42 +/- 0.06 TEAC units; P < 0.05), significantly higher change in absorbance (1.55 +/- 0.21 versus 1.36 +/- 0.17 arbitrary units; P < 0.05), but no difference in MDA (P = 0.6), compared to LAP subjects. There was a significant inverse association between TAC and slope (r = -0.49; P < 0.05). Lipoprotein profiles and daily intake of nutrients did not differ between the groups. Conclusions-These findings suggest that people with high aerobic power, due to extreme endurance exercise, have plasma with decreased antioxidant capacity and higher susceptibility to oxidation, which may increase their cardiovascular risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The relationship between cigarette smoking and cardiovascular disease is well established, yet the underlying mechanisms remain unclear. Although smokers have a more atherogenic lipid profile, this may be mediated by other lifestyle-related factors. Analysis of lipoprotein subclasses by the use of nuclear magnetic resonance spectroscopy (NMR) may improve characterisation of lipoprotein abnormalities. OBJECTIVE: We used NMR spectroscopy to investigate the relationships between smoking status, lifestyle-related risk factors, and lipoproteins in a contemporary cohort. METHODS: A total of 612 participants (360 women) aged 40–69 years at baseline (199021994) enrolled in the Melbourne Collaborative Cohort Study had plasma lipoproteins measured with NMR. Data were analysed separately by sex. RESULTS: After adjusting for lifestyle-related risk factors, including alcohol and dietary intake, physical activity, and weight, mean total low-density lipoprotein (LDL) particle concentration was greater for female smokers than nonsmokers. Both medium- and small-LDL particle concentrations contributed to this difference. Total high-density lipoprotein (HDL) and large-HDL particle concentrations were lower for female smokers than nonsmokers. The proportion with low HDL particle number was greater for female smokers than nonsmokers. For men, there were few smoking-related differences in lipoprotein measures. CONCLUSION: Female smokers have a more atherogenic lipoprotein profile than nonsmokers. This difference is independent of other lifestyle-related risk factors. Lipoprotein profiles did not differ greatly between male smokers and nonsmokers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background-Although dyslipoproteinemia is associated with arterial atherothrombosis, little is known about plasma lipoproteins in venous thrombosis patients. Methods and Results-We determined plasma lipoprotein subclass concentrations using nuclear magnetic resonance spectroscopy and antigenic levels of apolipoproteins AI and B in blood samples from 49 male venous thrombosis patients and matched controls aged <55 years. Venous thrombosis patients had significantly lower levels of HDL particles, large HDL particles, HDL cholesterol, and apolipoprotein AI and significantly higher levels of LDL particles and small LDL particles. The quartile-based odds ratios for decreased HDL particle and apolipoprotein AI levels in patients compared with controls were 6.5 and 6.0 (95% CI, 2.3 to 19 and 2.1 to 17), respectively. Odds ratios for apolipoprotein B/apolipoprotein AI ratio and LDL cholesterol/HDL cholesterol ratio were 6.3 and 2.7 (95% CI, 1.9 to 21 and 1.1 to 6.5), respectively. When polymorphisms in genes for hepatic lipase, endothelial lipase, and cholesteryl ester transfer protein were analyzed, patients differed significantly from controls in the allelic frequency for the TaqI B1/B2 polymorphism in cholesteryl ester transfer protein, consistent with the observed pattern of lower HDL and higher LDL. Conclusions-Venous thrombosis in men aged <55 years old is associated with dyslipoproteinemia involving lower levels of HDL particles, elevated levels of small LDL particles, and an elevated ratio of apolipoprotein B/apolipoprotein AI. This dyslipoproteinemia seems associated with a related cholesteryl ester transfer protein genotype difference. © 2005 American Heart Association, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several studies link the consumption of whole-grain products to a lowered risk of chronic diseases, such as certain types of cancer, type II diabetes, and cardiovascular diseases. However, the final conclusions of the exact protective mechanisms remain unclear, partly due to a lack of a suitable biomarker for the whole-grain cereals intake. Alkylresorcinols (AR) are phenolic lipids abundant in the outer parts of wheat and rye grains usually with homologues of C15:0- C25:0 alkyl chains, and are suggested to function as whole-grain biomarkers. Mammalian lignan enterolactone has also previously been studied as a potential whole-grain biomarker. In the present work a quantified gas chromatography-mass spectrometry method for the analysis of AR in plasma, erythrocytes, and lipoproteins was developed. The method was used to determine human and pig plasma AR concentrations after the intake of whole-grain wheat and rye products compared to low-fibre wheat bread diets to assess the usability of AR as biomarkers of whole-grain intake. AR plasma concentrations were compared to serum ENL concentrations. AR absorption and elimination kinetics were investigated in a pig model. AR occurrence in human erythrocyte membranes and plasma lipoproteins were determined, and the distribution of AR in blood was evaluated. Plasma AR seem to be absorbed via the lymphatic system from the small intestine, like many other lipophilic compounds. Their apparent elimination half-life is relatively short and is similar to that of tocopherols, which have a similar chemical structure. Plasma AR concentrations increased significantly after a one- to eight-week intake of whole-grain wheat and further on with whole-grain rye bread. The concentrations were also higher after habitual Finnish diet compared to diet with low-fibre bread. Inter-individual variation after a one-week intake of the same amount of bread was high, but the mean plasma AR concentrations increased with increasing AR intake. AR are incorporated into erythrocyte membranes and plasma lipoproteins, and VLDL and HDL were the main AR carriers in human plasma. Based on these studies, plasma AR could function as specific biomarkers of dietary whole-grain products. AR are exclusively found in whole-grains and are more suitable as specific biomarkers of whole-grain intake than previously investigated mammalian lignan enterolactone, that is formed from several plants other than cereals in the diet. Plasma AR C17:0/C21:0 -ratio could distinguish whether whole-grain products in the diet are mainly wheat or rye. AR could be used in epidemiological studies to determine whole-grain intake and to better assess the role of whole-grains in disease prevention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipoproteins are responsible for cholesterol traffic in humans. Low density lipoprotein (LDL) delivers cholesterol from liver to peripheral tissues. A misleading delivery can lead to the formation of atherosclerotic plaques. LDL has a single protein, apoB-100, that binds to a specific receptor. It is known that the failure associated with a deficient protein-receptor binding leads to plaque formation. ApoB-100 is a large single lipid-associated polypeptide difficulting the study of its structure. IR spectroscopy is a technique suitable to follow the different conformational changes produced in apoB-100 because it is not affected by the size of the protein or the turbidity of the sample. We have analyzed LDL spectra of different individuals and shown that, even if there are not big structural changes, a different pattern in the intensity of the band located around 1617 cm 21 related with strands embedded in the lipid monolayer, can be associated with a different conformational rearrangement that could affect to a protein interacting region with the receptor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims/hypothesis: Blood–retina barrier leakage in diabetes results in extravasation of plasma lipoproteins. Intra-retinal modified LDLs have been implicated in diabetic retinopathy (DR), but their effects on retinal pigment epithelial (RPE) cells and the added effects of extravasated modified HDLs are unknown.

Methods: In human retinas from individuals with and without diabetes and DR, immunohistochemistry was used to detect ApoB, ApoA1 and endoplasmic reticulum (ER) stress markers. In cell culture, human RPE cells were treated with native LDL (N-LDL) or heavily-oxidised glycated LDL (HOG-LDL) with or without pretreatment with native HDL (N-HDL) or heavilyoxidised glycated HDL (HOG-HDL). Cell viability, oxidative stress, ER stress, apoptosis and autophagy were assessed by Cell Counting Kit-8 assay, dichlorofluorescein assay, western blotting, immunofluorescence and TUNEL assay. In separate
experiments, RPE cells were treated with lipid oxidation products, 7-ketocholesterol (7-KC, 5–40 µmol/l) or 4-hydroxynonenal (4-HNE, 5–80 µmol/l), with or without pretreatment with N-HDL or HOG-HDL.

Results: ApoB, ApoA1 staining and RPE ER stress were increased in the presence of DR. HOG-LDL but not N-LDL significantly decreased RPE cell viability and increased reactive oxygen species generation, ER stress, apoptosis and autophagy. Similarly, 4-HNE and 7-KC decreased viability and induced ER stress. Pretreatment with N-HDL mitigated these effects, whereas HOG-HDL was less effective by most, but not all, measures.

Conclusions/interpretation: In DR, extravascular modified LDL may promote RPE injury through oxidative stress, ER stress, autophagy and apoptosis. N-HDL has protective effects, but HOG-HDL is less effective. Extravasation and modification of HDL may modulate the injurious effects of extravasated modified LDL on the retinal pigment epithelium.