1000 resultados para plasma fluctuations
Resumo:
Recurrences are close returns of a given state in a time series, and can be used to identify different dynamical regimes and other related phenomena, being particularly suited for analyzing experimental data. In this work, we use recurrence quantification analysis to investigate dynamical patterns in scalar data series obtained from measurements of floating potential and ion saturation current at the plasma edge of the Tokamak Chauffage Alfveacuten Breacutesilien [R. M. O. Galva approximate to o , Plasma Phys. Controlled Fusion 43, 1181 (2001)]. We consider plasma discharges with and without the application of radial electric bias, and also with two different regimes of current ramp. Our results indicate that biasing improves confinement through destroying highly recurrent regions within the plasma column that enhance particle and heat transport.
Resumo:
Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation - dissipation theorem, predicts similar to 0.034 mu G fields over similar to 0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation- dissipation theorem are not completely random, microgauss fields over regions greater than or similar to 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in less than or similar to 10(9) years in high redshift galaxies.
Resumo:
A Hall thruster, an E × B device used for in-space propulsion, utilizes an axial electric field to electrostatically accelerate plasma propellant from the spacecraft. The axial electric field is created by positively biasing the anode so that the positivelycharged ions may be accelerated (repelled) from the thruster, which produces thrust. However, plasma electrons are much smaller than ions and may be accelerated much more quickly toward the anode; if electrons were not impeded, a "short circuit" due to the electron flow would eliminate the thrust mechanism. Therefore, a magnetic field serves to "magnetize" plasma electrons internal to the thruster and confines them in gyro-orbits within the discharge channel. Without outside factors electrons would be confined indefinitely; however, electron-neutral collisions provide a mechanism to free electrons from their orbits allowing electrons to cross the magnetic field toward the anode, where this process is described by classical transport theory. To make matters worse, cross-field electron transport has been observed to be 100-1000 times that predicted by classical collisional theory, providing an efficiency loss mechanism and an obstacle for modeling and simulations in Hall thrusters. The main difficulty in studying electron transport in Hall thrusters is the coupling that exists between the plasma and the fields, where the plasma creates and yet is influenced by the electric field. A device has been constructed at MTU’s Isp Lab, the Hall Electron Mobility Gage, which was designed specifically to study electron transport in E × B devices, where the coupling between the plasma and electric field was virtually eliminated. In this device the two most cited contributors to electron transport in Hall thrusters, fluctuation-induced transport, and wall effects, were absent. Removing the dielectric walls and plasma fluctuations, while maintaining the field environment in vacuum, has allowed the study of electron dynamics in Hall thruster fields where the electrons behave as test particles in prescribed fields, greatly simplifying the environment. Therefore, it was possible to observe any effects on transport not linked to the cited mechanisms, and it was possible to observe trends of the enhanced mobility with control parameters of electric and magnetic fields and neutral density– parameters that are not independently variable in a Hall thruster. The result of the investigation was the observation of electron transport that was ~ 20-100 times the classical prediction. The cross-field electron transport in the Mobility Gage was generally lower than that found in a Hall thruster so these findings do not negate the possibility of fluctuations and/or wall collisions contributing to transport in a Hall thruster. However, this research led to the observation of enhanced cross-field transport that had not been previously isolated in Hall thruster fields, which is not reliant on momentum-transfer collisions, wall collisions or fluctuations.
Resumo:
We present measurements of net charge fluctuations in Au+Au collisions at s(NN)=19.6, 62.4, 130, and 200 GeV, Cu+Cu collisions at s(NN)=62.4 and 200 GeV, and p+p collisions at s=200 GeV using the dynamical net charge fluctuations measure nu(+-,dyn). We observe that the dynamical fluctuations are nonzero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N(ch) scaling but display approximate 1/N(part) scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.
Resumo:
This study investigated the variations in human plasma fluoride concentrations ([F]) and sought to determine the causes. Five subjects (27-33 years old) received a low-F diet during the 5 days of the study. Plasma samples and urine were collected every 3 h from 8 a.m. to 8 p.m. F, PTH, Ca and P were analyzed with the electrode, by chemiluminescence, AAS and colorimetry, respectively. A trend for the plasma [F] was found. The peak [F], 0.55 +/- 0.11 mu mol L(-1), occurred at 11 a.m. and the lowest [F], 0.50 +/- 0.06 mu mol L(-1) occurred between 5 and 8 p.m. Plasma [F] were positively correlated with urinary F excretion rates and with serum PTH levels, but not with the Ca or P levels. Serum PTH levels were positively correlated with urinary F excretion rates and negatively correlated with plasma Ca. The results suggest that the renal system seems to control the daily fluctuations in plasma [F]. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.
Resumo:
The time-course of metabolic events following response to a model hepatotoxin ethionine (800 mg/kg) was investigated over a 7 day period in rats using high-resolution (1)H NMR spectroscopic analysis of urine and multivariate statistics. Complementary information was obtained by multivariate analysis of (1)H MAS NMR spectra of intact liver and by conventional histopathology and clinical chemistry of blood plasma. (1)H MAS NMR spectra of liver showed toxin-induced lipidosis 24 h postdose consistent with the steatosis observed by histopathology, while hypertaurinuria was suggestive of liver injury. Early biochemical changes in urine included elevation of guanidinoacetate, suggesting impaired methylation reactions. Urinary increases in 5-oxoproline and glycine suggested disruption of the gamma-glutamyl cycle. Signs of ATP depletion together with impairment of the energy metabolism were given from the decreased levels in tricarboxylic acid cycle intermediates, the appearance of ketone bodies in urine, the depletion of hepatic glucose and glycogen, and also hypoglycemia. The observed increase in nicotinuric acid in urine could be an indication of an increase in NAD catabolism, a possible consequence of ATP depletion. Effects on the gut microbiota were suggested by the observed urinary reductions in the microbial metabolites 3-/4-hydroxyphenyl propionic acid, dimethylamine, and tryptamine. At later stages of toxicity, there was evidence of kidney damage, as indicated by the tubular damage observed by histopathology, supported by increased urinary excretion of lactic acid, amino acids, and glucose. These studies have given new insights into mechanisms of ethionine-induced toxicity and show the value of multisystem level data integration in the understanding of experimental models of toxicity or disease.
Resumo:
Three rapid, poleward bursts of plasma flow, observed by the U.K.-POLAR EISCAT experiment, are studied in detail. In all three cases the large ion velocities (> 1 kms−1) are shown to drive the ion velocity distribution into a non-Maxwellian form, identified by the characteristic shape of the observed spectra and the fact that analysis of the spectra with the assumption of a Maxwellian distribution leads to excessive rises in apparent ion temperature, and an anticorrelation of apparent electron and ion temperatures. For all three periods the total scattered power is shown to rise with apparent ion temperature by up to 6 dB more than is expected for an isotropic Maxwellian plasma of constant density and by an even larger factor than that expected for non-thermal plasma. The anomalous increases in power are only observed at the lower altitudes (< 300 km). At greater altitudes the rise in power is roughly consistent with that simulated numerically for homogeneous, anisotropic, non-Maxwellian plasma of constant density, viewed using the U.K.-POLAR aspect angle. The spectra at times of anomalously high power are found to be asymmetric, showing an enhancement near the downward Doppler-shifted ion-acoustic frequency. Although it is not possible to eliminate completely rapid plasma density fluctuations as a cause of these power increases, such effects cannot explain the observed spectra and the correlation of power and apparent ion temperature without an unlikely set of coincidences. The observations are made along a beam direction which is as much as 16.5° from orthogonality with the geomagnetic field. Nevertheless, some form of coherent-like echo contamination of the incoherent scatter spectrum is the most satisfactory explanation of these data.
Resumo:
We have investigated plasma turbulence at the edge of a tokamak plasma using data from electrostatic potential fluctuations measured in the Brazilian tokamak TCABR. Recurrence quantification analysis has been used to provide diagnostics of the deterministic content of the series. We have focused our analysis on the radial dependence of potential fluctuations and their characterization by recurrence-based diagnostics. Our main result is that the deterministic content of the experimental signals is most pronounced at the external part of the plasma column just before the plasma radius. Since the chaoticity of the signals follows the same trend, we have concluded that the electrostatic plasma turbulence at the tokamak plasma edge can be partially explained by means of a deterministic nonlinear system. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of event background fluctuations on charged particle jet reconstruction in Pb-Pb collisions at root s(NN) = 2.76 TeV has been measured with the ALICE experiment. The main sources of non-statistical fluctuations are characterized based purely on experimental data with an unbiased method, as well as by using single high p(t) particles and simulated jets embedded into real Pb-Pb events and reconstructed with the anti-k(t) jet finder. The influence of a low transverse momentum cut-off on particles used in the jet reconstruction is quantified by varying the minimum track p(t) between 0.15 GeV/c and 2 GeV/c. For embedded jets reconstructed from charged particles with p(t) > 0.15 GeV/c, the uncertainty in the reconstructed jet transverse momentum due to the heavy-ion background is measured to be 11.3 GeV/c (standard deviation) for the 10% most central Pb-Pb collisions, slightly larger than the value of 11.0 GeV/c measured using the unbiased method. For a higher particle transverse momentum threshold of 2 GeV/c, which will generate a stronger bias towards hard fragmentation in the jet finding process, the standard deviation of the fluctuations in the reconstructed jet transverse momentum is reduced to 4.8-5.0 GeV/c for the 10% most central events. A non-Gaussian tail of the momentum uncertainty is observed and its impact on the reconstructed jet spectrum is evaluated for varying particle momentum thresholds, by folding the measured fluctuations with steeply falling spectra.
Resumo:
We present a study of the optical properties of GaN/AlN and InGaN/GaN quantum dot (QD) superlattices grown via plasma-assisted molecular-beam epitaxy, as compared to their quantum well (QW) counterparts. The three-dimensional/two-dimensional nature of the structures has been verified using atomic force microscopy and transmission electron microscopy. The QD superlattices present higher internal quantum efficiency as compared to the respective QWs as a result of the three-dimensional carrier localization in the islands. In the QW samples, photoluminescence (PL) measurements point out a certain degree of carrier localization due to structural defects or thickness fluctuations, which is more pronounced in InGaN/GaN QWs due to alloy inhomogeneity. In the case of the QD stacks, carrier localization on potential fluctuations with a spatial extension smaller than the QD size is observed only for the InGaN QD-sample with the highest In content (peak emission around 2.76 eV). These results confirm the efficiency of the QD three-dimensional confinement in circumventing the potential fluctuations related to structural defects or alloy inhomogeneity. PL excitation measurements demonstrate efficient carrier transfer from the wetting layer to the QDs in the GaN/AlN system, even for low QD densities (~1010 cm-3). In the case of InGaN/GaN QDs, transport losses in the GaN barriers cannot be discarded, but an upper limit to these losses of 15% is deduced from PL measurements as a function of the excitation wavelength.
Resumo:
We tested the hypothesis that increases in tumor necrosis factor alpha (TNF-alpha) induced by human immunodeficiency virus (HIV) are associated with the increases in slow-wave sleep seen in early HIV infection and the decrease with sleep fragmentation seen in advanced HIV infection. Nocturnal sleep disturbances and associated fatigue contribute to the disability of HIV infection. TNF-alpha causes fatigue in clinical use and promotes slow-wave sleep in animal models. With slow progress toward a vaccine and weak effects from current therapies, efforts are directed toward extending productive life of HIV-infected individuals and shortening the duration of disability in terminal illness. We describe previously unrecognized nocturnal cyclic variations in plasma levels of TNF-alpha in all subjects. In 6 of 10 subjects (1 control subject, 3 HIV-seropositive patients with CD4+ cell number > 400 cells per microliters, and 2 HIV-positive patients with CD4+ cell number < 400 cells per microliters), these fluctuations in TNF-alpha were coupled to the known rhythm of electroencephalogram delta amplitude (square root of power) during sleep. This coupling was not present in 3 HIV-positive subjects with CD4+ cell number < 400 cells per microliters and 1 control subject. In 5 HIV subjects with abnormally low CD4+ cell counts ( < 400 cells per microliters), the number of days since seroconversion correlated significantly with low correlation between TNF-alpha and delta amplitude. We conclude that a previously unrecognized normal, physiological coupling exists between TNF-alpha and delta amplitude during sleep and that the lessened likelihood of this coupling in progressive HIV infection may be important in understanding fatigue-related symptoms and disabilities.
Resumo:
Ethanol consumption damages the prostate, and testosterone is known by anti-inflammatory role. The cytokines were investigated in the plasma and ventral prostate of UChB rats submitted or not to testosterone therapy by ELISA and Western blot, respectively. Additionally, inflammatory foci and mast cells were identified in the ventral prostate slides stained by hematoxylin and eosin and toluidine blue, respectively. Inflammatory foci were found in the ethanol-treated animals and absent after testosterone therapy. Plasma levels of IL-6 and IL-10 were not changed while TNFα and TFG-β1 were increased in the animals submitted testosterone therapy. Regarding to ventral prostate, IL-6 did not alter, while IL-10, TNFα, and TFG-β1 were increased after testosterone therapy. Ethanol increases NFR2 in addition to high number of intact and degranulated mast cell which were reduced after testosterone therapy. So, ethanol and testosterone differentially modulates the cytokines in the plasma and prostate.