980 resultados para planting dates
Resumo:
The aim of this work was evaluating the performance of several cultivars of green corn for consumption 'in natura' in different planting dates. The first planting date was on May 26th, and the others, every 40 days. The hybrids (treatments) were: AG-1051, Agroeste 1567, BM-3061, Prezoto-32D10, PL-6880, BX-1382 and GNZ-2004. The following characteristics were evaluated: production, commercial ears weight without husk, commercial ears number, commercial ears diameter and length, male flowering, plant height and height of ear corn insertion. The cultivars AG1051, Agroeste 1567 and BM 3061 presented the best results compared to the others and they should be used in green corn production for ` in natura' consumption in Passos County, MG.
Resumo:
Soybean planting date studies of various types have been conducted at this site since 1976. Earlier tests included later planting dates (May through mid-June), differing variety maturities, and comparisons with starter fertilizer and Ridomil fungicide soil treatments. Research reports on these studies can be found in previous annual progress reports with the last summary in the 2001 and 2009 reports.
Resumo:
De forma geral, as características do amido variam não somente com a planta de origem, mas também com o estádio de desenvolvimento desta. Neste trabalho objetivou-se avaliar a influência da época de plantio e estádio de desenvolvimento da planta de ahipa sobre as características físico-químicas das raízes, tamanho de grânulos do amido e suas propriedades viscográficas. Constatou-se influência do estádio de desenvolvimento da planta nas características físico-químicas das raízes e do amido, independentemente da época de plantio. A melhor época para o plantio de Pachyrhizus ahipa é outubro e a colheita deve ser feita no máximo com 9 meses, adotando-se o procedimento de retirada das flores a partir dos 3 meses.
Resumo:
Switchgrass (Panicum virgatum L.) is a perennial grass holding great promise as a biofuel resource. While Michigan’s Upper Peninsula has an appropriate land base and climatic conditions, there is little research exploring the possibilities of switchgrass production. The overall objectives of this research were to investigate switchgrass establishment in the northern edge of its distribution through: investigating the effects of competition on the germination and establishment of switchgrass through the developmental and competitive characteristics of Cave-in-Rock switchgrass and large crabgrass (Digitaria sanguinalis L.) in Michigan’s Upper Peninsula; and, determining the optimum planting depths and timing for switchgrass in Michigan’s Upper Peninsula. For the competition study, a randomized complete block design was installed June 2009 at two locations in Michigan’s Upper Peninsula. Four treatments (0, 1, 4, and 8 plants/m2) of crabgrass were planted with one switchgrass plant. There was a significant difference between switchgrass biomass produced in year one, as a function of crabgrass weed pressure. There was no significant difference between the switchgrass biomass produced in year two versus previous crabgrass weed pressure. There is a significant difference between switchgrass biomass produced in year one and two. For the depth and timing study, a completely randomized design was installed at two locations in Michigan’s Upper Peninsula on seven planting dates (three fall 2009, and four spring 2010); 25 seeds were planted 2 cm apart along 0.5 m rows at depths of: 0.6 cm, 1.3 cm, and 1.9 cm. Emergence and biomass yields were compared by planting date, and depths. A greenhouse seeding experiment was established using the same planting depths and parameters as the field study. The number of seedlings was tallied daily for 30 days. There was a significant difference in survivorship between the fall and spring planting dates, with the spring being more successful. Of the four spring planting dates, there was a significant difference between May and June in emergence and biomass yield. June planting dates had the most percent emergence and total survivorship. There is no significant difference between planting switchgrass at depths of 0.6 cm, 1.3 cm, and 1.9 cm. In conclusion, switchgrass showed no signs of a legacy effect of competition from year one, on biomass production. Overall, an antagonistic effect on switchgrass biomass yield during the establishment period has been observed as a result of increasing competing weed pressure. When planting switchgrass in Michigan’s Upper Peninsula, it should be done in the spring, within the first two weeks of June, at any depth ranging from 0.6 cm to 1.9 cm.
Resumo:
Corn is planted earlier each year, which is one important component in maximizing grain yield. Earlier planting dates can be attributed to larger farms, less spring tillage, improvements in corn hybrids, improved drainage systems, and better seed treatments. Research conducted at the ISU Northwest Research Farm from 2006 through 2009 showed that the planting window for 98 percent or greater yield potential in northwest Iowa is April 15 to May 9. A 95 percent or greater yield potential can be realized from April 15 to May 18. A study was conducted from 2009 through 2011 at the Northwest Research Farm to determine how corn planted in early April compares with corn planted in the recommended planting window for the area.
Resumo:
p.207-212
Resumo:
Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.
Resumo:
White or Guinea yam (Dioscorea rotundata), grown for its underground tubers, is an important food in West Africa. Progress in yam breeding is constrained by variable flowering behaviour, making hybridization difficult. Yam clones may be dioecious, monoecious or hermaphrodite with variable sex ratios. The proportion of plants that flower and the flowering intensity also vary with season and location. The objective of the present work was to investigate whether variation in flowering behaviour was related to factors determining rate of development (photoperiod and temperature through sowing date, location and year) or growth (cumulative solar radiation and temperature). Sex ratios, the proportion of plants that had flower buds and open flowers, and the number of flowers or spikes was recorded in one male (TDr 131) and one female (TDr 99-9) clone of white yam grown in the field in Nigeria at three locations and at different sowing dates. Clone TDr 131 was uniformly male flowering, while clone TDr 99-9 exhibited a number of sex types with gynoecious, monoecious and trimonoecious plants observed. The proportion of flowering plants was low in both clones, averaging 0.34 in clone TDr 131 and 0.13 in clone TDr 99-9. Day of vine emergence had a significant and contrasting effect on the proportion of flowering plants and on flowering intensity in the two clones. In clone TDr 131, the proportion of flowering plants and flowering intensity declined with later vine emergence at all locations (r=0.43-0.53, P<0.05), whereas in clone TDr 99-9 the proportion of flowering plants increased with later emergence (r=0.46, P<0.01). In clone TDr 131, this response was strongly associated with warmer temperatures (r=0.49-0.50; P<0.05) and greater cumulative radiation (r=0.85-0.93; P<0.001) between vine emergence and flowering, rather than photoperiod at vine emergence. This suggests that flowering behaviour in the male clone TDr 131 is strongly influenced by factors that affect growth rather than development. Clone TDr 99-9, on the other hand, exhibited no clear relations between flowering and growth or developmental factors, though the proportion of flowering plants and flowering intensity was greatest at planting dates close to the longest day and at temperatures of 25-26 degrees C. This might suggest that flowering behaviour in clone TDr 99-9 is controlled by photothermal responses.
Resumo:
Field experiments were conducted in northern Greece in 2003 and 2004 to evaluate effects of tillage regimes (moldboard plowing, chisel plowing, and rotary tilling), cropping sequences(continuous cotton, cotton-sugar beet rotation,and continuous tobacco) and herbicide treatments with inter-row hand hoeing on weed population densities. Total weed densities were not affected by tillage treatment except that of barnyardgrass (Echinochloa crus-galli), which increased only in moldboard plowing treated plots during 2003. Redroot pigweed (Amaranthus retroflexus)and black nightshade (Solanum nigrum) densities were reduced in continuous cotton, while purple nutsedge (Cyperus rotundus), E. crus-galli, S. nigrum, and johnsongras(Sorghum halepense) densities were reduced in tobacco. A. retroflexus and S. nigrum were effectively controlled by all herbicide treatments with inter-row hand hoeing,whereas E. crus-galli was effectively reduced by herbicides applied to cotton and tobacco. S. halepense density reduction was a result of herbicide applied to tobacco with inter-row hand hoeing. Yield of all crops was higher under moldboard plowing and herbicide treatments. Pre-sowing and pre-emergence herbicide treatments in cotton and pre-transplant in tobacco integrated with inter-row cultivation resulted in efficient control of annual weed species and good crop yields. These observations are of practical relevance to crop selection by farmers in order to maintain weed populations at economically acceptable densities through the integration of various planting dates, sustainable herbicide use and inter-row cultivation; tools of great importance in integrated weed management systems. Keywords: cropping sequence, herbicide, integrated weed management, inter-row cultivation,tillage.
Resumo:
In this article we propose a 0-1 optimization model to determine a crop rotation schedule for each plot in a cropping area. The rotations have the same duration in all the plots and the crops are selected to maximize plot occupation. The crops may have different production times and planting dates. The problem includes planting constraints for adjacent plots and also for sequences of crops in the rotations. Moreover, cultivating crops for green manuring and fallow periods are scheduled into each plot. As the model has, in general, a great number of constraints and variables, we propose a heuristics based on column generation. To evaluate the performance of the model and the method, computational experiments using real-world data were performed. The solutions obtained indicate that the method generates good results.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Estudou-se, através do presente trabalho, o efeito de épocas de semeadura sobre o comportamento de diversas leguminosas, comumente utilizadas na prática da adubação verde. O delineamento experimental usado no campo foi o inteiramente casualizado, em esquema de parcelas subdivididas com 40 tratamentos, constituídos pela combinação de 10 leguminosas com 4 épocas de semeadura. Os resultados obtidos indicaram que para todas as leguminosas avaliadas, as épocas de semeadura influenciaram a produção de matéria seca total, sobressaindo a mucuna preta (Stizolobiun aterrimum) na semeadura de janeiro e o guandu (Cajanus cajan) cv. FAJ e cv. Paraíba na semeadura de outubro. A mucuna preta constituiu-se na melhor opção para rotação com culturas de verão de ciclo curto.
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA