987 resultados para plant tissue


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus) or organized tissues or organs put in culture, under controlled sterile conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P rosea syn. Indica belong to the family of plumbaginaceae, is an important medicinal plant, cultivated widely in India. The roots of these plant are generally used for medicinal purposes mainly as diuretic, germicidal, vessicant, and abortifacient. It is also used for anaemia, diarrhea, leprosy and common wart. The bark of the root contains orange yellow pigment named plumbagin, a crystalline substance, belongs to the class of naphthoquinone. Its chemical structure is 5-hydroxy 2-methyl 1,4naphthoquinone. Apart from P rosea, P zeylanica, P europea, Drosera and Drosophyllum also contains plumbagin. The most exploited source of plumbagin is, of course, P. rosea roots. The roots contain O.9mg/ g D.Wt. of plumbagin in the roots. These plants grow very slowly and the roots suitable for plumbagin extraction can be obtained only after several years of growth. The productivity of the plant is also rather poor. The focus of the present study was to develop alternative strategies to obtain plumbagin. The tissue culture of P rosea for micropropagation has been studied

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants may be regenerated from stomatal cells or protoplasts of such cells. Prior to regeneration the cells or protoplasts may be genetically transformed by the introduction of hereditary material most preferably by a DNA construct which is free of genes which specify resistance to antibiotics. The regeneration step may include callus formation on a hormone-free medium. The method is particularly suitable for sugar beet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To understand effects of tissue type, growth stage and soil fertilisers on bacterial endophyte communities of winter wheat (Triticum aestivum cv. Hereward). Methods: Endophytes were isolated from wheat grown under six fertiliser conditions in the long term Broadbalk Experiment at Rothamsted Research, UK. Samples were taken in May and July from root and leaf tissues. Results: Root and leaf communities differed in abundance and composition of endophytes. Endophytes were most abundant in roots and the Proteobacteria were most prevalent. In contrast, Firmicutes and Actinobacteria, the Gram positive phyla, were most prevalent in the leaves. Both fertiliser treatment and sample time influenced abundance and relative proportions of each phylum and genus in the endosphere. A higher density of endophytes was found in the Nil input treatment plants. Conclusions: Robust isolation techniques and stringent controls are critical for accurate recovery of endophytes. The plant tissue type, plant growth stage, and soil fertiliser treatment all contribute to the composition of the endophytic bacterial community in wheat. These results should help facilitate targeted development of endophytes for beneficial applications in agriculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the concentration of sucrose solutions on the cellular structure of potato tissue in equilibrium at 27 degreesC was Studied. Two different methods of investigation were used to determine the volume of the different phases composing the cellular tissue of the potato when in equilibrium with the solutions. one based on data of the concentration itself and the overall volume of 2 mm slices after 48 h at equilibrium, and the other on microscopic images of cells in thin slices of fresh tissue stained with neutral red after an hour in equilibrium to show protoplasts, vacuoles and plasmolysis spaces. The results of these methods were compared with those obtained by a predictive thermodynamic approach considering the semipermeability of cell membranes. Phase volume data obtained from microscopic analysis were more similar to what was predicted by the theoretical model than those obtained by means of composition measurement. where the long equilibrium time apparently led to the loss of semi permeability of the cell membranes, since total volumes calculated without consideration of the cell membranes were similar to those measured. This suggests that the length of time of osmotic dehydration brings about a change in cell structure and the consequent involvement of a different mechanism in mass transfer. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mentha piperita L. is an aromatic and medicinal species of the family Lamiaceae, known as mint or peppermint, and its leaves and branches produce essential oil rich in menthol. This study aimed to evaluate physiological indexes, macro- and micronutrients inthe shootsand essential oil of Mentha piperita L. grown in nutrient solution number 2 of Hoagland and Arnon (1950) with different N, P, K and Mg levels. Shoot length, dry mass of the different organs, total dry mass, leaf area, essential oil yield and composition, and macronutrient (N, P, K, Mg, Ca, S) and micronutrient (Mn, Cu, Fe, Zn) contents in the shoot were evaluated. Plants treated with 65%N/50%P/25%K/100%Mg had a tendency towards longer shoot, greaterroot and leaf blade dry masses, higher essential oil yield, higher menthol levels and lower menthone levels. The results showed that Mentha can be grown in nutrient solution by reducing 65% N, 50% P, 25% K and 100% Mg. This solution had better development compared to the other tested treatments. Therefore,we recommendMentha piperita L. to be grown with such nutrient levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ricinosome (synonym, precursor protease vesicle) is a novel organelle, found so far exclusively in plant cells. Electron microscopic studies suggest that it buds off from the endoplasmic reticulum in senescing tissues. Biochemical support for this unusual origin now comes from the composition of the purified organelle, which contains large amounts of a 45-kDa cysteine endoprotease precursor with a C-terminal KDEL motif and the endoplasmic reticulum lumen residents BiP (binding protein) and protein disulfide isomerase. Western blot analysis, peptide sequencing, and mass spectrometry demonstrate retention of KDEL in the protease proform. Acidification of isolated ricinosomes causes castor bean cysteine endopeptidase activation, with cleavage of the N-terminal propeptide and the C-terminal KDEL motif. We propose that ricinosomes accumulate during senescence by programmed cell death and are activated by release of protons from acidic vacuoles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant tissue and organ culture has been extensively used from the beginning of the XX century for the study and comprehension of some primary biological mechanisms such as morphogenesis. However, with the increasing demand of the market for novel products derived from plants, in vitro culture became a reliable technique for the mass production of plant material. Moreover, the potential to use this technique for the production of some bioactive compounds, such as phenolic compounds, is immense since it allows the manipulation of the biosynthetic routes to increase the production and accumulation of specific compounds. This work intends to make a brief historical review of in vitro culture, highlighting its use for the production of bioactive compounds. Also, emphasizes the importance of phenolic compounds for the consumer as well reviews the metabolic pathways involved in its production in plant cells. Furthermore, it was carried out a comprehensive study on the work developed for the production of plant phenolic compounds in in vitro cultures, as well as on the type of elicitors used to increase of the same production; also a brief highlighting of the phenolic compounds which serve as elicitors. There are numerous reports directed to the production of phenolic extracts in in vitro plant cultures, however there is a lack in the production of individual phenolic compounds mainly due to the complexity of the biosynthetic routes and extraction procedures. Elicitation procedures are often used to increase the production of phenolics, archieving in most cases higher yields than in non-elicitated cultures. The increasing production of bioactive phenolic extracts/compounds allows for their further applicability, namely in the industry of functional foods or in pharmaceutical/medical fields.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluoride (F) is an air pollutant that causes phytotoxicity. Besides the importance of this, losses of agricultural crops in the vicinity of F polluting industries in Brazil have been recently reported. Injuries caused to plant leaf cell structures by excess F are not well characterized. However, this may contribute to understanding the ways in which plant physiological and biochemical processes are altered. A study evaluated the effects of the atmospheric F on leaf characteristics and growth of young trees of sweet orange and coffee exposed to low (0.04 mol L(-1)) or high (0.16 mol L(-1)) doses of HF nebulized in closed chamber for 28 days plus a control treatment not exposed. Gladiolus and ryegrass were used as bioindicators in the experiment to monitor F exposure levels. Fluoride concentration and dry mass of leaves were evaluated. Leaf anatomy was observed under light and electron microscopy. High F concentrations (similar to 180 mg kg(-1)) were found in leaves of plants exposed at the highest dose of HF. Visual symptoms of F toxicity in leaves of citrus and coffee were observed. Analyses of plant tissue provided evidence that F caused degeneration of cell wall and cytoplasm and disorganization of bundle sheath, which were more evident in Gladiolus and coffee. Minor changes were observed for sweet orange and ryegrass. Increase on individual stomatal area was also marked for the Gladiolus and coffee, and which were characterized by occurrence of opened ostioles. The increased F absorption by leaves and changes at the structural and ultrastructural level of leaf tissues correlated with reduced plant growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Egg laying site selection by a host plant specialist leaf miner moth at two intra-plant levels in the northern Chilean Atacama Desert. The spatial distribution of the immature stages of the leaf miner Angelabella tecomae Vargas & Parra, 2005 was determined at two intra-plant levels (shoot and leaflet) on the shrub Tecoma fulva fulva (Cav.) D. Don (Bignoniaceae) in the Azapa valley, northern Chilean Atacama Desert. An aggregated spatial pattern was detected for all the immature stages along the shoot, with an age dependent relative position: eggs and first instar larvae were clumped at apex; second, third and fourth instar larvae were mostly found at intermediate positions; meanwhile the spinning larva and pupa were clumped at basis. This pattern suggests that the females select new, actively growing leaflets for egg laying. At the leaflet level, the immature stages were found more frequently at underside. Furthermore, survivorship was higher for larvae from underside mines. All these results highlight the importance of an accurate selection of egg laying site in the life history of this highly specialized leaf miner. By contrast, eventual wrong choices in the egg laying site selection may be associated with diminished larval survivorship. The importance of the continuous availability of new plant tissue in this highly human modified arid environment is discussed in relation with the observed patterns.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Magnaporthe oryzae causes rice blast, the most serious foliar fungal disease of cultivated rice (Oryza sativa). During hemibiotrophic leaf infection, the pathogen simultaneously combines biotrophic and necrotrophic growth. Here, we provide cytological and molecular evidence that, in contrast to leaf tissue infection, the fungus adopts a uniquely biotrophic infection strategy in roots for a prolonged period and spreads without causing a loss of host cell viability. Consistent with a biotrophic lifestyle, intracellularly growing hyphae of M. oryzae are surrounded by a plant-derived membrane. Global, temporal gene expression analysis used to monitor rice responses to progressive root infection revealed a rapid but transient induction of basal defense-related gene transcripts, indicating perception of the pathogen by the rice root. Early defense gene induction was followed by suppression at the onset of intracellular fungal growth, consistent with the biotrophic nature of root invasion. By contrast, during foliar infection, the vast majority of these transcripts continued to accumulate or increased in abundance. Furthermore, induction of necrotrophy-associated genes during early tissue penetration, previously observed in infected leaves, was not seen in roots. Collectively, our results not only report a global characterization of transcriptional root responses to a biotrophic fungal pathogen but also provide initial evidence for tissue-adapted fungal infection strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In comparison with other micronutrients, the levels of nickel (Ni) available in soils and plant tissues are very low, making quantification very difficult. The objective of this paper is to present optimized determination methods of Ni availability in soils by extractants and total content in plant tissues for routine commercial laboratory analyses. Samples of natural and agricultural soils were processed and analyzed by Mehlich-1 extraction and by DTPA. To quantify Ni in the plant tissues, samples were digested with nitric acid in a closed system in a microwave oven. The measurement was performed by inductively coupled plasma/optical emission spectrometry (ICP-OES). There was a positive and significant correlation between the levels of available Ni in the soils subjected to Mehlich-1 and DTPA extraction, while for plant tissue samples the Ni levels recovered were high and similar to the reference materials. The availability of Ni in some of the natural soil and plant tissue samples were lower than the limits of quantification. Concentrations of this micronutrient were higher in the soil samples in which Ni had been applied. Nickel concentration differed in the plant parts analyzed, with highest levels in the grains of soybean. The grain, in comparison with the shoot and leaf concentrations, were better correlated with the soil available levels for both extractants. The methods described in this article were efficient in quantifying Ni and can be used for routine laboratory analysis of soils and plant tissues.