999 resultados para plant lectins
Resumo:
Lectins, carbohydrate-binding proteins of non-immune origin, that agglutinate cells or precipitate polysaccharides and glycoconjugates, are well distributed in nature, mainly in the Plant Kingdom. The great majority of the plante lectins are present in seed cotyledons where they are found in the cytoplasm or int he protein bodies, although they have also been found in roots, stems and leaves. Due to their peculiar properties, the lectins are used as a tool both for analytical and preparative purposes in biochemistry, cellular biology, immunology and related areas. In agriculture and medicine the use of lectins greatly improved in the last few years. The lextins, with few exceptions, are glycoproteins, need divalent cations to display full activity and are, in general, oligomers with variable molecular weight. Although the studies on lectins have completed a century, their role in nature is yet ynknown . Several hypotheses on their physiological functions have been suggested. Thus, lectins could play important roles in defense against pathogens, plant-microorganism symbiosis, cell organization, embryo morphogenesis, phagocytosis, cell wall elongation, pollen recognition and as reserve proteins. A brief review on the general properties and roles of the lectins is given.
Resumo:
Histamine release induced by plant lectins was studied with emphasis on the carbohydrate specificity, external calcium requirement, metal binding sites, and mast cell heterogeneity and on the importance of antibodies bound to the mast cell membrane to the lectin effect. Peritoneal mast cells were obtained by direct lavage of the rat peritoneal cavity and guinea pig intestine and hamster cheek pouch mast cells were obtained by dispersion with collagenase type IA. Histamine release was induced with concanavalin A (Con A), lectins from Canavalia brasiliensis, mannose-specific Cymbosema roseum, Maackia amurensis, Parkia platycephala, Triticum vulgaris (WGA), and demetallized Con A and C. brasiliensis, using 1-300 µg/ml lectin concentrations applied to Wistar rat peritoneal mast cells, peaking on 26.9, 21.0, 29.1, 24.9, 17.2, 10.7, 19.9, and 41.5%, respectively. This effect was inhibited in the absence of extracellular calcium. The lectins were also active on hamster cheek pouch mast cells (except demetallized Con A) and on Rowett nude rat (animal free of immunoglobulins) peritoneal mast cells (except for mannose-specific C. roseum, P. platycephala and WGA). No effect was observed in guinea pig intestine mast cells. Glucose-saturated Con A and C. brasiliensis also released histamine from Wistar rat peritoneal mast cells. These results suggest that histamine release induced by lectins is influenced by the heterogeneity of mast cells and depends on extracellular calcium. The results also suggest that this histamine release might occur by alternative mechanisms, because the usual mechanism of lectins is related to their binding properties to metals from which depend the binding to sugars, which would be their sites to bind to immunoglobulins. In the present study, we show that the histamine release by lectins was also induced by demetallized lectins and by sugar-saturated lectins (which would avoid their binding to other sugars). Additionally, the lectins also released histamine from Rowett nude mast cells that are free of immunoglobulins.
Resumo:
Histamine release induced by plant lectins was studied with emphasis on the carbohydrate specificity, external calcium requirement, metal binding sites, and mast cell heterogeneity and on the importance of antibodies bound to the mast cell membrane to the lectin effect. Peritoneal mast cells were obtained by direct lavage of the rat peritoneal cavity and guinea pig intestine and hamster cheek pouch mast cells were obtained by dispersion with collagenase type IA. Histamine release was induced with concanavalin A (Con A), lectins from Canavalia brasiliensis, mannose-specific Cymbosema roseum, Maackia amurensis, Parkia platycephala, Triticum vulgaris (WGA), and demetallized Con A and C. brasiliensis, using 1-300 µg/ml lectin concentrations applied to Wistar rat peritoneal mast cells, peaking on 26.9, 21.0, 29.1, 24.9, 17.2, 10.7, 19.9, and 41.5%, respectively. This effect was inhibited in the absence of extracellular calcium. The lectins were also active on hamster cheek pouch mast cells (except demetallized Con A) and on Rowett nude rat (animal free of immunoglobulins) peritoneal mast cells (except for mannose-specific C. roseum, P. platycephala and WGA). No effect was observed in guinea pig intestine mast cells. Glucose-saturated Con A and C. brasiliensis also released histamine from Wistar rat peritoneal mast cells. These results suggest that histamine release induced by lectins is influenced by the heterogeneity of mast cells and depends on extracellular calcium. The results also suggest that this histamine release might occur by alternative mechanisms, because the usual mechanism of lectins is related to their binding properties to metals from which depend the binding to sugars, which would be their sites to bind to immunoglobulins. In the present study, we show that the histamine release by lectins was also induced by demetallized lectins and by sugar-saturated lectins (which would avoid their binding to other sugars). Additionally, the lectins also released histamine from Rowett nude mast cells that are free of immunoglobulins.
Resumo:
Plant lectins, especially those purified from species of the Legummosae family, represent the best studied group of carbohydrate-binding proteins. The legume lectins from Diocleinae subtribe are highly similar proteins that present significant differences in the potency/ efficacy of their biological activities. The structural studies of the interactions between lectins and sugars may clarify the origin of the distinct biological activities observed in this high similar class of proteins. In this way, this work presents a crystallographic study of the ConM and CGL (agglutinins from Canavalia maritima and Canavalia gladiata, respectively) in the following complexes: ConM/ CGL:Man(alpha 1-2)Man(alpha 1-0)Me, ConM/CGL:Man(alpha 1-O)Man(alpha 1-O)Me and ConM/CGL:Man(alpha 1-4)Man(alpha 1-O)Me, which crystallized in different conditions and space group from the native proteins.The structures were solved by molecular replacement, presenting satisfactory values for R-factor and R-factor. Comparisons between ConM, CGL and ConA (Canavalia ensiformis lectin) binding mode with the dimannosides in subject, presented different interactions patterns, which may account for a structural explanation of the distincts biological properties observed in the lectins of Diocleinae subtribe. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Neutrophil migration is responsible for tissue damage observed in inflammatory diseases and is also implicated in inflammatory nociception. The use of lectins has been demonstrated to be effective in different activities including anti-inflammatory, antimicrobial, and in cancer therapy. In this study, we addressed the potential use of a lectin from Canavalia grandiflora seeds (ConGF) to control neutrophil migration and inflammatory hypernociception. Pretreatment of the animals intravenously (15 min before) with ConGF inhibited neutrophil migration to the peritoneal cavity in a dose-dependent fashion confirmed by an inhibition of rolling and adhesion of leukocytes by intravital microscopy. Another set of experiments showed that pretreatment of the animals with ConGF inhibited the mechanical hypernociception in mice induced by the i.pl. injection of carrageenan or formalin. This anti-nociceptive effect correlated with an effective blockade of neutrophil influx, as assessed by the hind paw tissue myeloperoxidase levels. Furthermore, ConGF had important inhibitory effects on the mouse carrageenan-induced paw edema. In addition, animals treated with ConGF showed inhibition of cytokines release. In conclusion, we demonstrated that the lectin ConGF inhibits neutrophil migration and mechanical inflammatory hypernociception.
Resumo:
In the present study, we investigated the involvement of resident cell and inflammatory mediators in the neutrophil migration induced by chemotactic activity of a glucose/mannose-specific lectin isolated from Dioclea rostrata seeds (DrosL). Rats were injected i.p. with DrosL (125-1000 mu g/cavity), and at 2-96 h thereafter the leukocyte counts in peritoneal fluid were determined. DrosL-induced a dose-dependent neutrophil migration accumulation, which reached maximal response at 24 h after injection and declines thereafter. The carbohydrate ligand nearly abolished the neutrophil influx. Pre-treatment of peritoneal cavities with thioglycolate which increases peritoneal macrophage numbers, enhanced neutrophil migration induced by DrosL by 303%. However, the reduction of peritoneal mast cell numbers by treatment of the cavities with compound 48/80 did not modify DrosL-induced neutrophil migration. The injection into peritoneal cavities of supernatants from macrophage cultures stimulated with DrosL (125, 250 and 500 mu g/ml) induced neutrophil migration. In addition, DrosL treatment induced cytokines (TNF-alpha, IL-1 beta and CINC-1) and NO release into the peritoneal cavity of rats. Finally, neutrophil chemotaxis assay in vitro showed that the lectin (15 and 31 mu g/ml) induced neutrophil chemotaxis by even 180%. In conclusion, neutrophil migration induced by D. rostrata lectin occurs by way of the release of NO and cytokines such as IL-1 beta, TNF-alpha and CINC-1. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the present study was to evaluate the potential antinociceptive and toxicity of Canavalia boliviana lectin (CboL) using different methods in mice. The role of carbohydrate-binding sites was also investigated. CboL given to mice daily for 14 days at doses of 5 mg/kg did not cause any observable toxicity. CboL (1, 5, and 10 mg/kg) administered to mice intravenously inhibited abdominal constrictions induced by acetic acid and the two phases of the formalin test. In the hot plate and tail immersion tests, the same treatment of CboL induced significant increase in the latency period. In the hot plate test, the effect of CboL (5 mg/kg) was reversed by naloxone (1 mg/kg), indicating the involvement of the opioid system. In the open-field and rota-rod tests, the CboL treatment did not alter animals` motor function. These results show that CboL presents antinociceptive effects of both central and peripheral origin, involving the participation of the opioid system via lectin domain.
Resumo:
The relationship between the binding of Vicia villosa (VV) lectin and the expression of cytolytic function in T lymphoblasts has been investigated using flow cytofluorometric techniques. Spleen cells activated in vitro in 5-day mixed leukocyte cultures (MLC) were incubated sequentially with VV, rabbit anti-V antiserum, and fluoresceinated sheep anti-rabbit IgG. When these stained MLC cells were passed on a flow cytometer gated to exclude nonviable cells and small lymphocytes, a single heterogeneous peak of fluorescence was seen, as compared to control MLC cells that had not been incubated with VV. Fluorescence of lymphoblasts was dependent upon lectin dose and was eliminated when staining was performed in the presence of N-acetyl-D-galactosamine, the appropriate competitive sugar for VV. T cell blast populations activated against H-2, Mls, or parasite antigens all had comparable levels of fluorescence after staining with VV, although the cytolytic activity of these cells varied widely. Furthermore, when MLC lymphoblasts binding large or small amounts of VV were sorted on the basis of their relative fluorescence intensity and tested for cytolytic function, no appreciable difference in activity between the 2 populations was observed. These results are inconsistent with the hypothesis that VV binds selectively to cytolytic T lymphocytes.
Resumo:
We report herein the synthesis of some beta-D-galactopyranosylamine and beta-lactosylamine amides and sulfonamides. The interactions of these compounds with lectins from the seeds of Erythrina cristagalli (LEC) and Ricinus communis (RCA120) were evaluated in a hemagglutination inhibitory activity assay. D-Galactose and lactose were used as reference compounds. The beta-lactosylamine amides and sulfonamides were nearly as active as lactose in inhibiting LEC mediated hemagglutination and were less active against RCA120 agglutinin. The beta-D-galactopyranosylamine amides and sulfonamides were, with one exception, considerably less active than D-galactose in the assay with both lectins.
Resumo:
Lectins have been classified into a structurally diverse group of proteins that bind carbohydrates and glycoconjugates with high specificity. They are extremely useful molecules in the characterization of saccharides, as drug delivery mediators, and even as cellular surface makers. In this study, we present camptosemin, a new lectin from Camptosema ellipticum. It was characterized as an N-acetyl-d-galactosamine-binding homo-tetrameric lectin, with a molecular weight around 26 kDa/monomers. The monomers were stable over a wide range of pH values and exhibited pH-dependent oligomerization. Camptosemin promoted adhesion of breast cancer cells and hemagglutination, and both activities were inhibited by its binding of sugar. The stability and unfolding/folding behavior of this lectin was characterized using fluorescence and far-UV circular dichroism spectroscopies. The results indicate that chemical unfolding of camptosemin proceeds as a two-state monomer-tetramer process. In addition, small-angle X-ray scattering shows that camptosemin behaves as a soluble and stable homo-tetramer molecule in solution.
Resumo:
Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407 ± 15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed β(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-β-d-glucopyranose units in chitin. The full-length amino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 Å resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (βα) 8 barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182. © 2006 The Authors.
Resumo:
The question of which factors are central in determining whether a cell will undertake a new round of mitosis or will decycle has been examined in the isolated thymic lymphocyte model. Such cell populations possess both in vivo and in vitro a subpopulation of quiescent lymphoblasts which may be induced to reinitiate their mitotic programme. In the intact animal the major determinant of proliferative activity is the plasma ionised calcium concentration. However it has been established in culture that a variety of hormones, ions, cyclic nucleotides, plant lectins and ionophores may like calcium elicit a mitogenic response. These agents do not appear however to initiate DNA synthesis in an identical fashion. Rather there are two distinct intracellular mitogenic axes. The first axis includes a number of adenylate cyclase stimulants, cyclic AMP, phosphodiesterase inhibitors and magnesium ions. It was found that all these mitogens required extracellular magnesium ions to exhibit their stimulatory capacity. This dichotomy in mitogenic activity was further emphasised by the observation that these mitogens are all inhibited by testosterone, whilst the magnesium-independent mitogens were insensitive to this androgen. Indeed this second group of stimulatory factors required the presence of calcium ions in the extracellular milieu for activity, and were, in contrast to the magnesium-dependent mitogens inhibited by the presence of oestradiol in the culture. By examining the interrelationships between these various mitogens and inhibitors it has been possible to propose a mechanism to describe the activation process in the thymocyte. Studies of the metabolism of cyclic nucleotides, membrane potential and transmembrane ion fluxes indicate that there may be a complex relationship between membrane fluidity, ion balance and cyclic nucleotide levels which may individually or in concert promote the initiation of DNA synthesis. A number of possible mechanisms are discussed to account for these observations.
Resumo:
The 24 nucleotides comprising the carbohydrate-recognition domain of Maackia amurensis hemagglutinin (MAH) cDNA were randomly mutated. The mutant lectins were expressed as glutathione-S-transferase fusion proteins in Escherichia coli and 16 clones were randomly chosen. Although all of 16 recombinant lectins reacted strongly with anti-MAH polyclonal antibody, the carbohydrate-recognition domain of each was unique. As shown by agglutination studies, each mutant MAH lectin was able to bind to erythrocytes from one or more of five animal species in very distinct patterns. Thus, novel plant lectin libraries can be used to discriminate in a highly specific manner among a variety of cell types. This technology may prove to be very useful in a number of different applications requiring a high level of specificity in cell identification.
Resumo:
Purified genomic DNA can be difficult to obtain from some plant species because of the presence of impurities such as polysaccharides, which are often co-extracted with DNA. In this study, we developed a fast, simple, and low-cost protocol for extracting DNA from plants containing high levels of secondary metabolites. This protocol does not require the use of volatile toxic reagents such as mercaptoethanol, chloroform, or phenol and allows the extraction of high-quality DNA from wild and cultivated tropical species.
Resumo:
Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation.