996 resultados para plant ground


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a prominent form of land use across much of upland Europe, extensive livestock grazing may hold the key to the sustainable management of these landscapes. Recent agricultural policy reform, however, has resulted in a decline in upland sheep numbers, prompting concern for the biodiversity value of these areas. This study quantifies the effects of varying levels of grazing management on plant, ground beetle and breeding bird diversity and assemblage in the uplands and lowlands of hill sheep farms in County Kerry, Ireland. Farms represent a continuum of light to heavy grazing, measured using a series of field indicators across several habitats, such as the internationally important blanket bog, home to the ground beetle, Carabus clatratus. Linear mixed effects modelling and non-metric multidimensional scaling are employed to disentangle the most influential management and environmental factors. Grazing state may be determined by the presence of Molinia caerulea or Nardus stricta, and variables such as % traditional ewes, % vegetation litter and % scrub prove valuable indicators of diversity. Measures of ecosystem functioning, e.g. plant biomass (nutrient cycling) and % vegetation cover (erosion rates) are influenced by plant diversity, which is influenced by grazing management. Levels of the ecosystem service, soil organic carbon, vary with ground beetle abundance and diversity, potentially influencing carbon sequestration and thereby climate change. The majority of species from all three taxa are found in the lowlands, with the exception of birds such as meadow pipit and skylark. The scale of measurement should be determined by the size and mobility of the species in question. The challenge is to manage these high nature value landscapes using agri-environment schemes which enhance biodiversity by maintaining structural heterogeneity across a range of scales, altitudes and habitats whilst integrating the decisions of people living and working in these marginal areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of burning and grazing on plant, ground beetle and spider species was investigated experimentally in stands of varying ages (burnt in 1982 and 1988 and unburnt plots) on an area of heather moorland in County Antrim, north-east Ireland. Burning initiated complex succession pathways which appear to have characteristic plant and invertebrate species associations. Removal of Calluna dominance initiated a period of high plant species diversity. Investigation of initial post-fire regeneration suggested that the frequency of occurrence of plant species changed over time and was affected by grazing. Grouping of species by the position of their renewal bud, i.e. their life-form, did not account for all observed interspecific variation. The dominant species after burning were Eriophorum vaginatum, E. angustifolium and Vaccinium myrtillus. Studies of vegetation canopy structure showed that, even with the exclusion of the main grazing herbivores, Calluna will not re-establish itself as the dominant species until several years after burning. The ground beetle Nebria salina was trapped more often on plots burnt in 1988 than on unburnt plots or those burnt in 1982. In comparison, Pterostichus niger and Carabus granulatus were trapped in greater numbers on plots burnt in 1982 than on unburnt plots and plots burnt in 1988. The large species Carabus problematicus and Carabus glabratus were trapped in greater numbers on unburnt plots. Similarly, more of the spiders Ceratinella brevipes and Centromerita concinna were trapped on the plots burnt in 1982. In comparison, Lepthyphantes zimmermanni and Robertus lividus were trapped more often on unburnt plots than on plots burnt in 1982 and 1988. Results are discussed with respect to the importance of the continuation of traditional heathland management practices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alkali activated binders, based on ash and slag, also known as geopolymers, can play a key role in reducing the carbon footprint of the construction sector by replacing ordinary Portland cement in some concretes. Since 1970s, research effort has been ongoing in many research institutions. In this study, pulverized fuel ash (PFA) from a UK power plant, ground granulated blast furnace slag (GGBS) and combinations of the two have been investigated as geopolymer binders for concrete applications. Activators used were sodium hydroxide and sodium silicate solutions. Mortars with sand/binder ratio of 2.75 with several PFA and GGBS combinations have been mixed and tested. The optimization of alkali dosage (defined as the Na2O/binder mass ratio) and modulus (defined as the Na2O/SiO2 mass ratio) resulted in strengths in excess of 70 MPa for tested mortars. Setting time and workability have been considered for the identification of the best combination of PFA/GGBS and alkali activator dosage for different precast concrete products. Geopolymer concrete building blocks have been replicated in laboratory and a real scale factory trial has been successfully carried out. Ongoing microstructural characterization is aiming to identify reaction products arising from PFA/GGBS combinations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alkali activated binders, based on ash and slag, also known as geopolymers, can play a key role in reducing the carbon footprint of the construction sector by replacing ordinary Portland cement in some concretes. Since 1970s, research effort has been ongoing in many research institutions. In this study, pulverized fuel ash (pfa) from a UK power plant, ground granulated blast furnace slag (ggbs) and combinations of the two have been investigated as geopolymer binders for concrete applications. Activators used were sodium hydroxide and sodium silicate solutions. Mortars with sand/binder ratio of 2.75 with several pfa and ggbs combinations have been mixed and tested. The optimization of alkali dosage (defined as the Na2O/binder mass ratio) and modulus (defined as the Na2O/SiO2 mass ratio) resulted in strengths in excess of 70 MPa for tested mortars. Setting time and workability have been considered for the identification of the best combination of pfa/ggbs and alkali activator dosage for different precast concrete products. Geopolymer concrete building blocks have been replicated in laboratory and a real scale factory trial has been successfully carried out. Ongoing microstructural characterization is aiming to identify reaction products arising from pfa/ggbs combinations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Todos que pensam sobre célula de manufatura entendem-na como algo semelhante à organização celular tipicamente implantada pela Toyota, ou seja, por produto. Nós, entretanto, identificamos quatro tipos de célula de manufatura: por produto com predominância da máquina, por produto com predominância do homem, por processo e por posição fixa do produto. A célula de manufatura por processo, por apresentar três grandes vantagens - proporcionar significativo aumento na produtividade do homem, não requerer operários multifuncionais e ser facilmente implantada -, é a mais recomendável para o atual estágio da indústria brasileira de manufatura

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant–soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Britain, managed grass lawns provide the most traditional and widespread of garden and landscape practices in use today. Grass lawns are coming under increasing challenge as they tend to support a low level of biodiversity and can require substantial additional inputs to maintain. Here we apply a novel approach to the traditional monocultural lawnscape by replacing grasses entirely with clonal perennial forbs. We monitored changes in plant coverage and species composition over a two year period and here we report the results of a study comparing plant origin native, non-native and mixed) and mowing regime. This allows us to assess the viability of this construct as an alternative to traditional grass lawns. Grass-free lawns provided a similar level of plant cover to grass lawns. Both the mowing regime and the combination of species used affected this outcome, with native plant species seen to have the highest survival rates, and mowing at 4cm to produce the greatest amount of ground coverage and plant species diversity within grass-free lawns. Grass-free lawns required over 50% less mowing than a traditionally managed grass lawn. Observations suggest that plant forms that exhibited: a) a relatively fast growth rate, b) a relatively large individual leaf area, and c) an average leaf height substantially above the cut to be applied, were unsuitable for use in grass-free lawns. With an equivalent level of ground coverage to grass lawns, increased plant diversity and a reduced need for mowing, the grass-free lawn can be seen as a species diverse, lower input and potentially highly ornamental alternative to the traditional lawn format.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The grass-free lawn is a novel development in modern ornamental horticulture where the traditional monoculture of grass is replaced by a variety of mowing-tolerant clonal forbs. It brings floral aesthetics and a diverse species approach to the use of lawn space. How the number of constituent forb species affects the aesthetic and structural performance of grass-free lawns was investigated using grass-free lawns composed of four, six and twelve British native clonal perennial forb species. Lawn productivity was seen to increase with increasing species number but the relationship was not linear. Plant cover was dynamic in all lawn types, varied between years and was not representative of individual species' floral performance. The behaviour of component species common to all lawns suggested that lawns with 12 species show greater structural stability than the lawns with a lower species number. Visual performance in lawns with the greatest species number was lower than in lawns with fewer species, with increasing variety in floral size and individual species floral productivity leading to a trade-off between diversity and floral performance. Individual species were seen to have different aesthetic functions in grass-free lawns either by providing flowers, ground coverage or both.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

At least two distinct trade-offs are thought to facilitate higher diversity in productive plant communities under herbivory. Higher investment in defence and enhanced colonization potential may both correlate with decreased competitive ability in plants. Herbivory may thus promote coexistence of plant species exhibiting divergent life history strategies. How different seasonally tied herbivore assemblages simultaneously affect plant community composition and diversity is, however, largely unknown. Two contrasting types of herbivory can be distinguished in the aquatic vegetation of the shallow lake Lauwersmeer. In summer, predominantly above-ground tissues are eaten, whereas in winter, waterfowl forage on below-ground plant propagules. In a 4-year exclosure study we experimentally separated above-ground herbivory by waterfowl and large fish in summer from below-ground herbivory by Bewick’s swans in winter. We measured the individual and combined effects of both herbivory periods on the composition of the three-species aquatic plant community. Herbivory effect sizes varied considerably from year to year. In 2 years herbivore exclusion in summer reinforced dominance of Potamogeton pectinatus with a concomitant decrease in Potamogeton pusillus, whereas no strong, unequivocal effect was observed in the other 2 years. Winter exclusion, on the other hand, had a negative effect on Zannichellia palustris, but the effect size differed considerably between years. We suggest that the colonization ability of Z. palustris may have enabled this species to be more abundant after reduction of P. pectinatus tuber densities by swans. Evenness decreased due to herbivore exclusion in summer. We conclude that seasonally tied above- and below-ground herbivory may each stimulate different components of a macrophyte community as they each favoured a different subordinate plant species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-sorted circles, non-sorted polygons, and earth hummocks are common ground-surface features ill arctic regions. The), are caused by a variety of physical processes that Occur in permafrost regions including contraction cracking and frost heave. Here we describe the vegetation of patterned-ground forms on zonal sites at three location!: along an N-S transect through the High Arctic of Canada. We made 75 releves on patterned-ground features (circles, polygons, earth hummocks) and adjacent tundra (Interpolygon, intercircle, interhummock areas) and identified and classified the vegetation according to the Braun-Blanquet Method. Environmental factors were correlated with the vegetation data using a nonmetric multidimensional scaling ordination (NMDS). We identified eleven commnunities: (1) Puccinellia angustata-Papaver radicalum community in xeromesic non-sorted polygons of subzone A of the Circumpolar Arctic Vegetation Map; (2) Saxifraga-Parmelia omphalodes ssp. glacialis community in hydromesic interpolygon areas of subzone A; (3) Hypogymnia subobscura-Lecanora epibryon community In xeromesic non-sorted polygons of subzone B; (4) Orthotrichum speciosum-Salix arctica community In xeromesic interpolygon areas of subzone B; (5) Cochlearia groenlandica-Luzula nivalis community in hydromesic earth Mocks Of subzone B; (6) Salix arctica-Eriophorum angustifolium ssp. triste community in hygric earth hummocks of subzone 13; (7) Puccinellia angustata-Potentilla vahliana community in xeromesic non-sorted circles and bare patches of subzone Q (8) Dryas integrifolia-Carex rupestris community in xeromesic intercircle areas and vegetated patches of subzone C; (9) Braya glabella ssp. purpurascens-Dryas integrifolia community In hydromesic non-sorted circles of subzone Q (10) Dryas integrifolia-Carex aquatilis community in hydromesic intercircle areas of subzone C; and (11) Eriophorum angustifolium ssp. triste-Carex aquatilis community ill hygric intercircle areas of subzone C. The NMDS ordination displayed the vegetation types with respect to complex environmental gradients. The first axis of the ordination corresponds to a complex soil moisture gradient and the second axis corresponds to a complex geology/elevation/climate gradient. The tundra plots have a greater moss and graminoid cover than the adjacent frost-heave communities. In general, frost-heave features have greater thaw depths, more bare ground, thinner organic horizons, and lower soil moisture than the surrounding tundra. The morphology of the investigated patterned ground forms changes along the climatic gradient, with non-sorted pollygons dominating in the northernmost sites and non-sorted circles dominating, in the southern sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature.