908 resultados para plant disease loss
Resumo:
For many years Australian forest pathologists and other scientists have dreaded the arrival of the rust fungus, Puccinia psidii, commonly known as Myrtle Rust, in Australia. This pathogen eventually did arrive in that country and was first detected in New South Wales in 2010 on Willow Myrtle (Agonis flexuosa). It is generally accepted that it entered the country on an ornamental Myrtales* host brought in by a private nursery. Despite efforts to eradicate the invasive rust, it has already spread widely, now occurring along the east coast of Australia, from temperate areas in Victoria and southern North South Wales to tropical areas in north Queensland.
Resumo:
A network is a natural structure with which to describe many aspects of a plant pathosystem. The article seeks to set out in a nonmathematical way some of the network concepts that promise to be useful in managing plant disease. The field has been stimulated by developments designed to help understand and manage animal and human disease, as well as by technical infrastructures, such as the internet. It overlaps partly with landscape ecology. The study of networks has helped identify likely ways to reduce flow of disease in traded plants, to find the best sites to monitor as warning sites for annually reinvading disease, and to understand the fundamentals of how a pathogen spreads in different structures. A tension between the free flow of goods or species down communication channels and free flow of pathogens down the same pathways is highlighted.
Resumo:
All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si) is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.
Resumo:
The Arabidopsis thaliana disease resistance genes RPS2 and RPM1 belong to a class of plant disease resistance genes that encode proteins that contain an N-terminal tripartite nucleotide binding site (NBS) and a C- terminal tandem array of leucine-rich repeats. RPS2 and RPM1 confer resistance to strains of the bacterial phytopathogen Pseudomonas syringae carrying the avirulence genes avrRpt2 and avrB, respectively. In these gene-for-gene relationships, it has been proposed that pathogen avirulence genes generate specific ligands that are recognized by cognate receptors encoded by the corresponding plant resistance genes. To test this hypothesis, it is crucial to know the site of the potential molecular recognition. Mutational analysis of RPS2 protein and in vitro translation/translocation studies indicated that RPS2 protein is localized in the plant cytoplasm. To determine whether avirulence gene products themselves are the ligands for resistance proteins, we expressed the avrRpt2 and avrB genes directly in plant cells using a novel quantitative transient expression assay, and found that expression of avrRpt2 and avrB elicited a resistance response in plants carrying the corresponding resistance genes. This observation indicates that no bacterial factors other than the avirulence gene products are required for the specific resistance response as long as the avirulence gene products are correctly localized. We propose that molecular recognition of P. syringae in RPS2- and RPM1-specified resistance occurs inside of plant cells.
Resumo:
Mode of access: Internet.
Resumo:
English title only, 1960-1976; English and French title, 1977-
Resumo:
Allowing plant pathology students to tackle fictitious or real crop problems during the course of their formal training not only teaches them the diagnostic process, but also provides for a better understanding of disease etiology. Such a problem-solving approach can also engage, motivate, and enthuse students about plant pathologgy in general. This paper presents examples of three problem-based approaches to diagnostic training utilizing freely available software. The first provides an adventure-game simulation where Students are asked to provide a diagnosis and recommendation after exploring a hypothetical scenario or case. Guidance is given oil how to create these scenarios. The second approach involves students creating their own scenarios. The third uses a diagnostic template combined with reporting software to both guide and capture students' results and reflections during a real diagnostic assignment.
Resumo:
2008
Resumo:
2008
Resumo:
Pratylenchus zeae, Meloidogyne javanica and M. incognita are considered key species of nematodes in sugarcane in Brazil, but P. brachyurus is also frequently found. This study was conducted to determine the aggressiveness of P. brachyurus compared with P. zeae to sugarcane. Plants were grown in pots (100 L) in an open area with initial inoculation of 10, 100, 1,000, 10,000 and 100,000/plant for P. brachyurus and P. zeae. The nematode inocula were from in vitro, carrot-cylinder cultures. Sampling was performed every 60 days until 300 days after inoculation. At harvest, we evaluated the population dynamics of the nematodes and plant growth characteristics. The population for the initial levels of 10 and 100,000 specimens/plant, for P. brachyurus and P. zeae at 300 days after inoculation were similar. This fact shows that, upon detection of nematodes in a certain place during the planting of sugarcane, the ratoon on this area should be treated so as to control populations of P. brachyurus and/or P. zeae. The damage caused by the initial population of 10 specimens of P. brachyurus was similar to those of 10.000 specimens of P. zeae. The variety CTC 2 was classified as susceptible to P. zeae and intolerant to P. brachyurus. Compared to the control, the losses as measured by the volume and fresh weight of shoots by the nematode species were 29.82% and 40.34%, respectively. Pratylenchus brachyurus was more aggressive than P. zeae to the CTC 2 sugarcane variety.