805 resultados para planetary nebulae: individual: NGC 7293


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuing our series of papers on the three-dimensional (3D) structure and accurate distances of planetary nebulae (PNe), we present here the results obtained for PN NGC 40. Using data from different sources and wavelengths, we construct 3D photoionization models and derive the physical quantities of the ionizing source and nebular gas. The procedure, discussed in detail in the previous papers, consists of the use of 3D photoionization codes constrained by observational data to derive the 3D nebular structure, physical and chemical characteristics, and ionizing star parameters of the objects by simultaneously fitting the integrated line intensities, the density map, the temperature map, and the observed morphologies in different emission lines. For this particular case we combined hydrodynamical simulations with the photoionization scheme in order to obtain self-consistent distributions of density and velocity of the nebular material. Combining the velocity field with the emission-line cubes we also obtained the synthetic position-velocity plots that are compared to the observations. Finally, using theoretical evolutionary tracks of intermediate-and low-mass stars, we derive the mass and age of the central star of NGC 40 as (0.567 +/- 0.06) M(circle dot) and (5810 +/- 600) yr, respectively. The distance obtained from the fitting procedure was (1150 +/- 120) pc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular hydrogen emission is commonly observed in planetary nebulae. Images taken in infrared H(2) emission lines show that at least part of the molecular emission is produced inside the ionized region. In the best studied case, the Helix nebula, the H(2) emission is produced inside cometary knots (CKs), comet-shaped structures believed to be clumps of dense neutral gas embedded within the ionized gas. Most of the H(2) emission of the CKs seems to be produced in a thin layer between the ionized diffuse gas and the neutral material of the knot, in a mini-photodissociation region (mini-PDR). However, PDR models published so far cannot fully explain all the characteristics of the H(2) emission of the CKs. In this work, we use the photoionization code AANGABA to study the H(2) emission of the CKs, particularly that produced in the interface H(+)/H(0) of the knot, where a significant fraction of the H(2) 1-0 S(1) emission seems to be produced. Our results show that the production of molecular hydrogen in such a region may explain several characteristics of the observed emission, particularly the high excitation temperature of the H(2) infrared lines. We find that the temperature derived from H(2) observations, even of a single knot, will depend very strongly on the observed transitions, with much higher temperatures derived from excited levels. We also proposed that the separation between the H alpha and [N II] peak emission observed in the images of CKs may be an effect of the distance of the knot from the star, since for knots farther from the central star the [N II] line is produced closer to the border of the CK than H alpha.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of accurate chemical abundances of planetary nebulae (PN) in different galaxies allows us to obtain important constraints on chemical evolution models for these systems. We have a long-term program to derive abundances in the galaxies of the Local Group, particularly the Large and Small Magellanic Clouds. In this work, we present our new results on these objects and discuss their implications in view of recent abundance determinations in the literature. In particular, we obtain distance-independent correlations involving He, N, O, Ne, S, and Ar, and compare the results with data from our own Galaxy and other galaxies in the Local Group. As a result of our observational program, we have a large database of PN in the Galaxy and the Magellanic Clouds, so that we can obtain reliable constraints on the nucleosynthesis processes in the progenitor stars in galaxies of different metallicities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Detections of molecular lines, mainly from H-2 and CO, reveal molecular material in planetary nebulae. Observations of a variety of molecules suggest that the molecular composition in these objects differs from that found in interstellar clouds or in circumstellar envelopes. The success of the models, which are mostly devoted to explain molecular densities in specific planetary nebulae, is still partial however. Aims. The present study aims at identifying the influence of stellar and nebular properties on the molecular composition of planetary nebulae by means of chemical models. A comparison of theoretical results with those derived from the observations may provide clues to the conditions that favor the presence of a particular molecule. Methods. A self-consistent photoionization numerical code was adapted to simulate cold molecular regions beyond the ionized zone. The code was used to obtain a grid of models and the resulting column densities are compared with those inferred from observations. Results. Our models show that the inclusion of an incident flux of X-rays is required to explain the molecular composition derived for planetary nebulae. We also obtain a more accurate relation for the N(CO)/N(H-2) ratio in these objects. Molecular masses obtained by previous works in the literature were then recalculated, showing that these masses can be underestimated by up to three orders of magnitude. We conclude that the problem of the missing mass in planetary nebulae can be solved by a more accurate calculation of the molecular mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Our understanding of the chemical evolution (CE) of the Galactic bulge requires the determination of abundances in large samples of giant stars and planetary nebulae (PNe). Studies based on high resolution spectroscopy of giant stars in several fields of the Galactic bulge obtained with very large telescopes have allowed important progress. Aims. We discuss PNe abundances in the Galactic bulge and compare these results with those presented in the literature for giant stars. Methods. We present the largest, high-quality data-set available for PNe in the direction of the Galactic bulge (inner-disk/bulge). For comparison purposes, we also consider a sample of PNe in the Large Magellanic Cloud (LMC). We derive the element abundances in a consistent way for all the PNe studied. By comparing the abundances for the bulge, inner-disk, and LMC, we identify elements that have not been modified during the evolution of the PN progenitor and can be used to trace the bulge chemical enrichment history. We then compare the PN abundances with abundances of bulge field giant. Results. At the metallicity of the bulge, we find that the abundances of O and Ne are close to the values for the interstellar medium at the time of the PN progenitor formation, and hence these elements can be used as tracers of the bulge CE, in the same way as S and Ar, which are not expected to be affected by nucleosynthetic processes during the evolution of the PN progenitors. The PN oxygen abundance distribution is shifted to lower values by 0.3 dex with respect to the distribution given by giants. A similar shift appears to occur for Ne and S. We discuss possible reasons for this PNe-giant discrepancy and conclude that this is probably due to systematic errors in the abundance derivations in either giants or PNe (or both). We issue an important warning concerning the use of absolute abundances in CE studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. The analysis and interpretation of the H(2) line emission from planetary nebulae have been done in the literature by assuming that the molecule survives only in regions where the hydrogen is neutral, as in photodissociation, neutral clumps, or shocked regions. However, there is strong observational and theoretical evidence that at least part of the H(2) emission is produced inside the ionized region of these objects. Aims. The aim of the present work is to calculate and analyze the infrared line emission of H(2) produced inside the ionized region of planetary nebulae using a one-dimensional photoionization code. Methods. The photoionization code Aangaba was improved in order to calculate the statistical population of the H(2) energy levels, as well as the intensity of the H(2) infrared emission lines in the physical conditions typical of planetary nebulae. A grid of models was obtained and the results then analyzed and compared with the observational data. Results. We show that the contribution of the ionized region to the H(2) line emission can be important, particularly in the case of nebulae with high-temperature central stars. This result explains why H(2) emission is more frequently observed in bipolar planetary nebulae (Gatley's rule), since this kind of object typically has hotter stars. Collisional excitation plays an important role in populating the rovibrational levels of the electronic ground state of H(2) molecules. Radiative mechanisms are also important, particularly for the upper vibrational levels. Formation pumping can have minor effects on the line intensities produced by de-excitation from very high rotational levels, especially in dense and dusty environments. We included the effect of the H(2) molecule on the thermal equilibrium of the gas, concluding that, in the ionized region, H(2) only contributes to the thermal equilibrium in the case of a very high temperature of the central star or a high dust-to-gas ratio, mainly through collisional de-excitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Determination of the ages of central stars of planetary nebulae (CSPN) is a complex problem, and there is presently no single method that can be generally applied. We have developed several methods of estimating the ages of CSPN, based on both the observed nebular properties and some properties of the stars themselves. Aims. Our aim is to estimate the ages and the age distribution of CSPN and to compare the derived results with mass and age determinations of CSPN and white dwarfs based on empirical determinations of these quantities. Methods. We considered a sample of planetary nebulae in the galactic disk, most of which (similar to 69%) are located in the solar neighbourhood, within 3 kpc from the Sun. We discuss several methods of deriving the age distribution of CSPN, namely; (i) the use of an age-metallicity relation that also depends on the galactocentric distance; (ii) the use of an age-metallicity relation obtained for the galactic disk; and (iii) the determination of ages from the central star masses obtained from the observed nitrogen abundances. Results. We estimated the age distribution of CSPN with average uncertainties of 1-2 Gyr, and compared our results with the expected distribution based both on the observed mass distribution of white dwarfs and on the age distribution derived from available mass distributions of CSPN. Based on our derived age distributions, we conclude that most CSPN in the galactic disk have ages under 6 Gyr, and that the age distribution is peaked around 2-4 Gyr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a sample of planetary nebulae located in the inner-disk and bulge of the Galaxy is used in order to find the galactocentric distance which better separates these two populations, from the point of view of abundances. Statistical distance scales are used to study the distribution of abundances across the disk-bulge interface. A Kolmogorov-Smirnov test is used to find the distance at which the chemical properties of these regions better separate. The results of the statistical analysis indicate that, on the average, the inner population has lower abundances than the outer. Additionally, for the a-element abundances, the inner population does not follow the disk radial gradient towards the galactic center. Based on our results, we suggest a bulge-disk interface at 1.5 kpc, marking the transition between the bulge and inner-disk of the Galaxy as defined by the intermediate mass population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of planetary nebulae in the inner-disk and bulge gives important information on the chemical abundances of elements such as He, N, O, Ar, Ne, and on the evolution of these abundances, which is associated with the evolution of intermediate-mass stars and the chemical evolution of time Galaxy. We present accurate abundances of the elements He, N, 5, 0, Ar, and Ne for a sample of 54 planetary nebulae located towards the bulge of the Galaxy, for 33 of which the abundances are derived here for the first time. The abundances are obtained based on observations in the optical domain made at the National Laboratory for Astrophysics (LNA, Brazil). The data show a good agreement; with other results in the literature, in the sense that the distribution of the abundances is similar to that of those works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a sample of planetary nebulae in the Galaxy's inner-disk and bulge is used to find the galactocentric distance that optimally separates these two populations in terms of their abundances. Statistical distance scales were used to investigate the distribution of abundances across the disk–bulge interface, while a Kolmogorov–Smirnov test was used to find the distance at which the chemical properties of these regions separate optimally. The statistical analysis indicates that, on average, the inner population is characterized by lower abundances than the outer component. Additionally, for the α-element abundances, the inner population does not follow the disk's radial gradient toward the Galactic Center. Based on our results, we suggest a bulge–disk interface at 1.5 kpc, marking the transition between the bulge and the inner disk of the Galaxy as defined by the intermediate-mass population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents further results from our spectroscopic study of the globular cluster (GC) system of the group elliptical NGC 3923. From observations made with the GMOS instrument on the Gemini South Telescope, an additional 50 GC and ultra-compact dwarf (UCD) candidates have been spectroscopically confirmed as members of the NGC 3923 system. When the recessional velocities of these GCs are combined with the 29 GC velocities reported previously, a total sample of 79 GC/UCD velocities is produced. This sample extends to over 6 arcmin (>6 R-e similar to 30 kpc) from the centre of NGC 3923 and is used to study the dynamics of the GC system and the dark matter content of NGC 3923. It is found that the GC system of NGC 3923 displays no appreciable rotation, and that the projected velocity dispersion is constant with radius within the uncertainties. The velocity dispersion profiles of the integrated light and GC system of NGC 3923 are indistinguishable over the region in which they overlap. We find some evidence that the diffuse light and GCs of NGC 3923 have radially biased orbits within similar to 130 arcsec. The application of axisymmetric orbit-based models to the GC and integrated light velocity dispersion profiles demonstrates that a significant increase in the mass-to-light ratio (from M/L-V = 8 to 26) at large galactocentric radii is required to explain this observation. We therefore confirm the presence of a dark matter halo in NGC 3923. We find that dark matter comprises 17.5(-4.5)(+7.3) per cent of the mass within 1 R-e, 41.2(-10.6)(+18.2) per cent within 2 R-e and 75.6(-16.8)(+15.4) per cent within the radius of our last kinematic tracer at 6.9 R-e. The total dynamical mass within this radius is found to be 1.5(-0.25)(+0.4) x 10(12) M-circle dot. In common with other studies of large ellipticals, we find that our derived dynamical mass profile is consistently higher than that derived by X-ray observations, by a factor of around 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional spectroscopy techniques are becoming more and more popular, producing an increasing number of large data cubes. The challenge of extracting information from these cubes requires the development of new techniques for data processing and analysis. We apply the recently developed technique of principal component analysis (PCA) tomography to a data cube from the center of the elliptical galaxy NGC 7097 and show that this technique is effective in decomposing the data into physically interpretable information. We find that the first five principal components of our data are associated with distinct physical characteristics. In particular, we detect a low-ionization nuclear-emitting region (LINER) with a weak broad component in the Balmer lines. Two images of the LINER are present in our data, one seen through a disk of gas and dust, and the other after scattering by free electrons and/or dust particles in the ionization cone. Furthermore, we extract the spectrum of the LINER, decontaminated from stellar and extended nebular emission, using only the technique of PCA tomography. We anticipate that the scattered image has polarized light due to its scattered nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. The enigmatic object HD 45166 is a qWR star in a binary system with an orbital period of 1.596 day, and presents a rich emission-line spectrum in addition to absorption lines from the companion star (B7 V). As the system inclination is very small (i = 0.77 degrees +/- 0.09 degrees), HD 45166 is an ideal laboratory for wind-structure studies. Aims. The goal of the present paper is to determine the fundamental stellar and wind parameters of the qWR star. Methods. A radiative transfer model for the wind and photosphere of the qWR star was calculated using the non-LTE code CMFGEN. The wind asymmetry was also analyzed using a recently-developed version of CMFGEN to compute the emerging spectrum in two-dimensional geometry. The temporal-variance spectrum (TVS) was calculated to study the line-profile variations. Results. Abundances and stellar and wind parameters of the qWR star were obtained. The qWR star has an effective temperature of T(eff) = 50 000 +/- 2000 K, a luminosity of log(L/L(circle dot)) = 3.75 +/- 0.08, and a corresponding photospheric radius of R(phot) = 1.00 R(circle dot). The star is helium-rich (N(H)/N(He) = 2.0), while the CNO abundances are anomalous when compared either to solar values, to planetary nebulae, or to WR stars. The mass-loss rate is. M = 2.2 x 10(-7) M(circle dot) yr(-1), and the wind terminal velocity is v(infinity) = 425 km s(-1). The comparison between the observed line profiles and models computed under different latitude-dependent wind densities strongly suggests the presence of an oblate wind density enhancement, with a density contrast of at least 8: 1 from equator to pole. If a high velocity polar wind is present (similar to 1200 km s(-1)), the minimum density contrast is reduced to 4:1. Conclusions. The wind parameters determined are unusual when compared to O-type stars or to typical WR stars. While for WR stars v(infinity)/v(esc) > 1.5, in the case of HD 45166 it is much smaller (v(infinity)/v(esc) = 0.32). In addition, the efficiency of momentum transfer is eta = 0.74, which is at least 4 times smaller than in a typical WR. We find evidence for the presence of a wind compression zone, since the equatorial wind density is significantly higher than the polar wind. The TVS supports the presence of such a latitude-dependent wind and a variable absorption/scattering gas near the equator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H alpha, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman & O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10(-4) M(circle dot) is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. NGC 6522 has been the first metal-poor globular cluster identified in the bulge by Baade. Despite its importance, very few high-resolution abundance analyses of stars in this cluster are available. The bulge metal-poor clusters may be important tracers of the early chemical enrichment of the Galaxy. Aims. The main purpose of this study is to determine metallicity and elemental ratios in individual stars of NGC 6522. Methods. High-resolution spectra of 8 giants of the bulge's globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the FLAMES+GIRAFFE spectrograph. Multiband V, I, J, K(s) photometry was used to derive effective temperatures as reference values. Spectroscopic parameters were derived from Fe I and Fe II lines, and adopted for the derivation of abundance ratios. Results. The present analysis provides a metallicity [Fe/H] = -1.0 +/- 0.2. The alpha-elements oxygen, magnesium and silicon show [O/Fe] = +0.4 +/- 0.3, [Mg/Fe] = [Si/Fe] = +0.25 +/- 0.15, whereas calcium and titanium show shallower ratios of [Ca/Fe] = [Ti/Fe] = +0.15 +/- 0.15. The neutron-capture r-process element europium appears to be overabundant by [Eu/Fe] = +0.4 +/- 0.4. The neutron-capture s-elements lanthanum and barium are enhanced by [La/Fe] = +0.35 +/- 0.2 and [Ba/Fe] = +0.5 +/- 0.5. The large internal errors, indicating the large star-to-star variation in the barium and europium abundances, are also discussed. Conclusions. The moderate metallicity combined to a blue horizontal branch (BHB), are characteristics similar to those of HP 1 and NGC 6558, pointing to a population of very old globular clusters in the Galactic bulge. Also, the abundance ratios in NGC 6522 resemble those in HP 1 and NGC 6558. The ultimate conclusion is that the bulge is old, and went through an early prompt chemical enrichment.