996 resultados para pivotal function


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blood supply is a critical issue in most tissue engineering approaches for large defect healing. As vessel ingrowth from surrounding tissues is proven to be insufficient, current strategies are focusing on the neo-vascularisation process. In the present study, we developed an in vitro pre-vascularised construct using 3D polyurethane (PU) scaffolds, based on the association of human Endothelial Progenitor Cells (EPC, CD34+ and CD133+) with human Mesenchymal Stem Cells (MSC). We showed the formation of luminal tubular structures in the co-seeded scaffolds as early as day 7 in culture. These tubular structures were proven positive for endothelial markers von Willebrand Factor and PECAM-1. Of special significance in our constructs is the presence of CD146-positive cells, as a part of the neovasculature scaffolding. These cells, coming from the mesenchymal stem cells population (MSC or EPC-depleted MSC), also expressed other markers of pericyte cells (NG2 and αSMA) that are known to play a pivotal function in the stabilisation of newly formed pre-vascular networks. In parallel, in co-cultures, osteogenic differentiation of MSCs occurred earlier when compared to MSCs monocultures, suggesting the close cooperation between the two cell populations. The presence of angiogenic factors (from autologous platelet lysates) in association with osteogenic factors seems to be crucial for both cell populations' cooperation. These results are promising for future clinical applications, as all components (cells, growth factors) can be prepared in an autologous way.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In cells infected with HIV type 1 (HIV-1), the integrated viral promoter is present in a chromatin-bound conformation and is transcriptionally silent in the absence of stimulation. The HIV-1 Tat protein binds to a stem-loop structure at the 5′ end of viral mRNA and relieves this inhibition by inducing a remodeling of the nucleosome arrangement downstream of the transcription-initiation site. Here we show that Tat performs this activity by recruiting to the viral long terminal repeat (LTR) the transcriptional coactivator p300 and the closely related CREB-binding protein (CBP), having histone acetyltransferase (HAT) activity. Tat associates with HAT activity in human nuclear extracts and binds to p300 and CBP both in vitro and in vivo. Integrity of the basic domain of Tat is essential for this interaction. By a quantitative chromatin immunoprecipitation assay we show that the delivery of recombinant Tat induces the association of p300 and CBP with the chromosomally integrated LTR promoter. Expression of human p300 in both human and rodent cells increases the levels of Tat transactivation of the integrated LTR. These results reinforce the evidence that p300 and CBP have a pivotal function at both cellular and viral promoters and demonstrate that they also can be recruited by an RNA-targeted activator. Additionally, these findings have important implications for the understanding of the mechanisms of HIV-1 latency and reactivation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The yeast cytosol contains multiple homologs of the DnaK and DnaJ chaperone family. Our current understanding of which homologs functionally interact is incomplete. Zuotin is a DnaJ homolog bound to the yeast ribosome. We have now identified the DnaK homolog Ssz1p/Pdr13p as zuotin's partner chaperone. Zuotin and Ssz1p form a ribosome-associated complex (RAC) that is bound to the ribosome via the zuotin subunit. RAC is unique among the eukaryotic DnaK-DnaJ systems, as the 1:1 complex is stable, even in the presence of ATP or ADP. In vitro, RAC stimulates the translocation of a ribosome-bound mitochondrial precursor protein into mitochondria, providing evidence for its chaperone-like effect on nascent chains. In agreement with the existence of a functional complex, deletion of each RAC subunit resulted in a similar phenotype in vivo. However, overexpression of zuotin partly rescued the growth defect of the Δssz1 strain, whereas overexpression of Ssz1p did not affect the Δzuo1 strain, suggesting a pivotal function for the DnaJ homolog.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tämän tutkimuksen tarkoitus oli tutkia T-tyypin kalsiumkanavan toimintaa ja sen mahdollista roolia neuronaalisten kantasolujen migraatiossa. T-tyypin kalsiumkanavan tehtävän kehittyneissä aivoissa tiedetään olevan elektroenkefalografisten oskillaatioiden tuottaminen. Nämä taas ovat eräiden fysiologisten ja patofysiologisten tapahtumien säätelyssä avainasemassa. Tällaisia tapahtumia ovat uni, muisti, oppiminen ja epileptiset poissaolokohtaukset. Näiden lisäksi T-tyypin kalsiumkanavalla on myös periferaalisia vaikutuksia, mutta tämä tutkielma keskittyy sen neuronaalisiin toimintoihin. Tämän matalan jännitteen säätelemän kanavan toiminta neurogeneesin aikana on vähemmän tutkittua ja tunnettua kuin sen vaikutukset kehittyneissä aivoissa. T-tyypin kalsiumkanavan tiedetään edistävän kantasolujen proliferaatiota ja erilaistumista neurogeneesiksen aikana, mutta vaikutukset niiden migraatioon ovat vähemmän tunnetut. Tämä tutkimus näyttää T-tyypin kalsiumkanavan todennäköisesti osallistuvan neuronaaliseen migraatioon hiiren alkion subventrikkeli alueelta eristetyillä kanta- tai progeniittorisoluilla tehdyissä kokeissa. Selektiiviset T-tyypin kalsiumkanavan antagonistit, etosuksimidi, nikkeli ja skorpionitoksiini, kurtoxin hidastivat migraatiota erilaistuvissa progeniittorisoluissa. Tämä tutkimus koostuu kirjallisuuskatsauksesta ja kokeellisesta osasta. Tämän tutkimuksen toinen tarkoitus oli esitellä vaihtoehtoinen lähestymistapa invasiiviselle kantasoluterapialle, joka vaatii kantasolujen viljelyä ja siirtämistä ihmiseen. Tämä toinen tapa on endogeenisten kantasolujen eiinvasiivinen stimulointi, jolla ne saadaan migratoitumaan kohdekudokseen, erilaistumaan siellä ja tehtävänsä suoritettuaan lopettamaan jakaantumisen. Non-invasiivinen kantasoluterapia on vasta tiensä alussa, ja tarvitsee farmakologista osaamista kehittyäkseen. Joitain onnistuneita ei-invasiivisia hoitoja on jo tehty selkärangan vaurioiden korjaamisessa. Vastaavanlaisia menetelmiä voitaisiin käyttää myös keskushermoston vaurioiden ja neurodegeneratiivisten sairauksien hoidossa. Näiden menetelmien kehittäminen vaatii endogeenisten kantasoluja inhiboivien ja indusoivien mekanismien tuntemista. Yksi tärkeä kantasolujen erilaistumista stimuloiva tekijä on kalsiumioni. Jänniteherkät kalsiumkanavat osallistuvat kaikkiin neurogeneesiksen eri vaiheisiin. T-tyypin kalsiumkanava, joka ekspressoituu suuressa määrin keskushermoston kehityksen alkuvaiheessa ja vähenee neuronaalisen kehityksen edetessä, saattaa olla oleellisessa asemassa progeniittorisolujen ohjaamisessa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells (DCs) play a pivotal role in linking the innate immunity and acquired immunity in responses to pathogen. Non-human primates such as Chinese Rhesus Macaque (CRM) are the favorable models for preclinical study of potential therapeutic drugs,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eph kinases are the largest family of cell surface receptor tyrosine kinases. The ligands of Ephs, ephrins (EFNs), are also cell surface molecules. Ephs interact with EFNs and the receptors and ligands transmit signals in both directions, i.e., from Ephs to EFNs and from EFNs to Ephs. Ephs and EFNs are widely involved in various developmental, physiological pathophysiological processes. Our group and others have reported the roles of Ephs/EFNs in the immune system. To further investigate the function of EphBs/EFNBs in T cell development and responses, we generated EFNB1, EFNB2, EphB4 conditional gene knockout (KO) mice and EFNB1/2 double KO mice. In the projects using EFNB1 and EFNB2 knockout mice, we specifically deleted EFNB1 or EFNB2 in T cells. The mice had normal size and cellularity of the thymus and spleen as well as normal T cell subpopulations in these organs. The bone marrow progenitors from KO mice and WT mice repopulated the host lymphoid organs to similar extents. The activation and proliferation of KO T cells was comparable to that of control mice. Naïve KO CD4 cells differentiated into Th1, Th2, Th17 and Treg cells similar to naïve control CD4 cells. In EFNB2 KO mice, we observed a significant relative increase of CD4CD8 double negative thymocytes in the thymus. Flowcytometry analysis revealed that there was a moderate increase in the DN3 subpopulation in the thymus. This suggests that EFNB2 is involved in thymocyte development. Our results indicate that the functions of EFNB1 and EFNB2 in the T cell compartment could be compensated by each other or by other members of the EFN family, and that such redundancy safeguards the pivotal roles of EFNB1 and EFNB2 in T cell development and function. In the project using EFNB1/B2 double knockout (dKO) model, we revealed a novel regulatory function of EFNb1 and EFNb2 in stabilizing IL-7Rα expression on the T cell surface. IL-7 plays important roles in thymocyte development, T cell homeostasis and survival. IL-7Rα undergoes internalization upon IL-7 binding. In the dKO mice, we observed reduced IL-7Rα expression in thymocytes and T cells. Moreover, the IL-7Rα internalization was accelerated in dKO CD4 cells upon IL-7 stimulation. In T cell lymphoma cell line, EL4, over-expression of either EFNB1 or EFNB2 retarded the internalization of IL-7Rα. We further demonstrated compromised IL-7 signaling and homeostatic proliferation of dKO T cells. Mechanism study using fluorescence resonance energy transfer and immunoprecipitation demonstrated that physical interaction of EFNB1 and EFNB2 with IL-7Rα was likely responsible for the retarded IL-7Rα internalization. In the last project, using medullary thymic epithelial cell (mTEC)-specific EphB4 knockout mice, we investigated T cell development and function after EphB4 deletion in mTEC. EphB4 KO mice demonstrated normal thymic weight and cellularity. T cell development and function were not influenced by the EphB4 deletion. Lastly, the KO mice developed normal delayed type hypersensitivity. Overall, our results suggest that comprehensive cross interaction between Eph and EFN family members could compensate function of a given deleted member in the T cell development, and only simultaneous deletion of multiple EFNBs will reveal their true function in the immune system. In fact, such redundancy signifies vital roles of Ephs and EFNs in the immune system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vast majority of known proteins have not yet been experimentally characterized and little is known about their function. The design and implementation of computational tools can provide insight into the function of proteins based on their sequence, their structure, their evolutionary history and their association with other proteins. Knowledge of the three-dimensional (3D) structure of a protein can lead to a deep understanding of its mode of action and interaction, but currently the structures of <1% of sequences have been experimentally solved. For this reason, it became urgent to develop new methods that are able to computationally extract relevant information from protein sequence and structure. The starting point of my work has been the study of the properties of contacts between protein residues, since they constrain protein folding and characterize different protein structures. Prediction of residue contacts in proteins is an interesting problem whose solution may be useful in protein folding recognition and de novo design. The prediction of these contacts requires the study of the protein inter-residue distances related to the specific type of amino acid pair that are encoded in the so-called contact map. An interesting new way of analyzing those structures came out when network studies were introduced, with pivotal papers demonstrating that protein contact networks also exhibit small-world behavior. In order to highlight constraints for the prediction of protein contact maps and for applications in the field of protein structure prediction and/or reconstruction from experimentally determined contact maps, I studied to which extent the characteristic path length and clustering coefficient of the protein contacts network are values that reveal characteristic features of protein contact maps. Provided that residue contacts are known for a protein sequence, the major features of its 3D structure could be deduced by combining this knowledge with correctly predicted motifs of secondary structure. In the second part of my work I focused on a particular protein structural motif, the coiled-coil, known to mediate a variety of fundamental biological interactions. Coiled-coils are found in a variety of structural forms and in a wide range of proteins including, for example, small units such as leucine zippers that drive the dimerization of many transcription factors or more complex structures such as the family of viral proteins responsible for virus-host membrane fusion. The coiled-coil structural motif is estimated to account for 5-10% of the protein sequences in the various genomes. Given their biological importance, in my work I introduced a Hidden Markov Model (HMM) that exploits the evolutionary information derived from multiple sequence alignments, to predict coiled-coil regions and to discriminate coiled-coil sequences. The results indicate that the new HMM outperforms all the existing programs and can be adopted for the coiled-coil prediction and for large-scale genome annotation. Genome annotation is a key issue in modern computational biology, being the starting point towards the understanding of the complex processes involved in biological networks. The rapid growth in the number of protein sequences and structures available poses new fundamental problems that still deserve an interpretation. Nevertheless, these data are at the basis of the design of new strategies for tackling problems such as the prediction of protein structure and function. Experimental determination of the functions of all these proteins would be a hugely time-consuming and costly task and, in most instances, has not been carried out. As an example, currently, approximately only 20% of annotated proteins in the Homo sapiens genome have been experimentally characterized. A commonly adopted procedure for annotating protein sequences relies on the "inheritance through homology" based on the notion that similar sequences share similar functions and structures. This procedure consists in the assignment of sequences to a specific group of functionally related sequences which had been grouped through clustering techniques. The clustering procedure is based on suitable similarity rules, since predicting protein structure and function from sequence largely depends on the value of sequence identity. However, additional levels of complexity are due to multi-domain proteins, to proteins that share common domains but that do not necessarily share the same function, to the finding that different combinations of shared domains can lead to different biological roles. In the last part of this study I developed and validate a system that contributes to sequence annotation by taking advantage of a validated transfer through inheritance procedure of the molecular functions and of the structural templates. After a cross-genome comparison with the BLAST program, clusters were built on the basis of two stringent constraints on sequence identity and coverage of the alignment. The adopted measure explicity answers to the problem of multi-domain proteins annotation and allows a fine grain division of the whole set of proteomes used, that ensures cluster homogeneity in terms of sequence length. A high level of coverage of structure templates on the length of protein sequences within clusters ensures that multi-domain proteins when present can be templates for sequences of similar length. This annotation procedure includes the possibility of reliably transferring statistically validated functions and structures to sequences considering information available in the present data bases of molecular functions and structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During my PhD I have been involved in several projects regarding the morphogenesis of the follicular epithelium, such as the analysis of the pathways that correlate follicular epithelium patterning and eggshell genes expression. Moreover, I used the follicular epithelium as a model system to analyze the function of the Drosophila homolog of the human von Hippel-Lindau (d-VHL) during oogenesis, in order to gain insight into the role of h-VHL for the pathogenesis of VHL disease. h-VHL is implicated in a variety of processes and there is now a greater appreciation of HIF-independent h-VHL functions that are relevant to tumour development, including maintenance and organization of the primary cilium, maintenance of the differentiated phenotype in renal cells and regulation of epithelial-mesenchymal transition. However, the function of h-VHL gene during development has not been fully understood. It was previously shown that d-VHL down-regulates the motility of tubular epithelial cells (tracheal cells) during embryogenesis. Epithelial morphogenesis is important for organogenesis and pivotal for carcinogenesis, but mechanisms that control it are poorly understood. The Drosophila follicular epithelium is a genetically tractable model to understand these mechanisms in vivo. Therefore, to examine whether d-VHL has a role in epithelial morphogenesis and maintenance, I performed genetic and molecular analyses by using in vivo and in vitro approaches. From my analysis, I determined that d-VHL binds to and stabilizes microtubules. Loss of d-VHL depolymerizes the microtubule network during oogenesis, leading to a possible deregulation in the subcellular trafficking transport of polarity markers from Golgi apparatus to the different domains in which follicle cells are divided. The analysis carried out has allowed to establish a significant role of d-VHL in the maintenance of the follicular epithelium integrity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microglial cells represent the endogenous immune system of the central nervous system (CNS). Upon pathological insults they reveal their immunological potential aimed at regaining homeostasis. These reactions have long been believed to follow a uniform and unspecific pattern which is irrespective to the underlying disease entity. Evidence is growing that this view seriously underrates microglial competence as the defenders of the CNS. In the present study, microglial cells of 47 dogs were examined ex vivo by means of flow cytometry. Ex vivo examination included immunophenotypic characterization using eight different surface markers and functional studies such as phagocytosis assay and the reactive oxygen species (ROS) generation test. The dogs were classified according to their histopathological diagnoses in disease categories (controls, canine distemper virus (CDV) induced demyelination, other diseases of the CNS) and results of microglial reaction profiles were compared. Immunophenotypic characterization generally revealed relative high conformity in the microglial disease response among the different groups, however the functional response was shown to be more specific. Dogs with intracranial inflammation and dogs with demyelination showed an enhanced phagocytosis, whereas a significant up-regulation of ROS generation was found in dogs with demyelination due to CDV infection. This strongly suggests a specific response of microglia to infection with CDV in the settings of our study and underlines the pivotal role of microglial ROS generation in the pathogenesis of demyelinating diseases, such as canine distemper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

End stage renal disease is a major complication after orthotopic liver transplantation (OLT). Vasoconstriction of renal arterial vessels because of calcineurin inhibitor (CNI) treatment plays a pivotal role in the development of renal insufficiency following OLT. Renal resistance can be measured non-invasively by determining the resistance index (RI) of segmental arteries by color-coded duplex ultrasonography, a measure with predictive value for future renal failure. Sixteen OLT patients on long-term CNI therapy were recruited prospectively and randomly assigned either to receive the m-TOR inhibitor sirolimus (SRL) or to continue on CNI treatment, and were followed for one yr. Serum creatinine (crea) declined after conversion to SRL, whereas it tended to increase in patients remaining on CNI (meanDelta crea SRL: -27, -18, -18, -15 micromol/L; meanDelta crea CNI: 4, 5, 8, 11 micromol/L at 1, 3, 6, 12 months, p = 0.02). RI improved after switching to SRL and was lower on SRL than on CNI (meanDeltaRI SRL: -0.04, -0.04, -0.03, -0.03; meanDeltaRI CNI: -0.006, 0.004, -0.007, -0.01 after 1, 3, 6, 12 months, p = 0.016). Individual changes of RI correlated significantly with individual changes of crea (r = 0.54, p < 0.001). Conversion from CNI to SRL can ameliorate renal function accompanied by a reduction of intrarenal RI after OLT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mitotic kinase Aurora B plays a pivotal role in mitosis and cytokinesis and governs the spindle assembly checkpoint which ensures correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in breast and other cancers and may be an important molecular target for chemotherapy. Tumor suppressor p53 is the guardian of the genome and an important negative regulator of the cell cycle. Previously, it was unknown whether Aurora B and p53 had mutual regulation during the cell cycle. A small molecule specific inhibitor of Aurora B, AZD1152, gave us an indication that Aurora B negatively impacted p53 during interphase and mitosis. Here, we show the antineoplastic activity of AZD1152 in six human breast cancer cell lines, three of which overexpress HER2. AZD1152 specifically inhibited Aurora B kinase activity, thereby causing mitotic catastrophe, polyploidy and apoptosis, which in turn led to apoptotic death. Further, AZD1152 administration efficiently suppressed tumor growth in orthotopic and metastatic breast cancer cell xenograft models. Notably, it was found that the protein level of Aurora B kinase declined after inhibition of Aurora B kinase activity. Investigation of the underlying mechanism suggested that AZD1152 accelerated the protein turnover of Aurora B by enhancing its ubiquitination. As a consequence of inhibition of Aurora B, p53 levels were increased in tissue culture and murine models. This hinted at a possible direct interaction between p53 and Aurora B. Indeed, it was found that p53 and Aurora B exist in complex and interact directly during interphase and at the centromere in mitosis. Further, Aurora B was shown to phosphorylate p53 at several serine/threonine residues in the DNA binding domain and these events caused downregulation of p53 levels via ubiquitination mediated by Mdm2. Importantly, phosphorylation of threonine 211 was shown to reduce p53’s transcriptional activity while other phosphorylation sites did not. On a functional level, Aurora B was shown to reduce p53’s capacity to mediate apoptosis in response to the DNA damaging agent, cisplatin. These results define a novel mechanism for p53 inactivation by Aurora B and imply that oncogenic hyperactivation or overexpression of Aurora B may compromise p53’s tumor suppressor function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa) transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transduction pathways operative in lymphokine activated killer (LAK) cells during execution of cytolytic function have never been characterized. Based on ubiquitous involvement of protein phosphorylation in activation of cytolytic mechanisms used by CTL and NK cells, it was hypothesized that changes in protein phosphorylation should occur when LAK encounter tumor targets. It was further hypothesized that protein kinases would regulate LAK-mediated cytotoxicity. Exposure to either SK-Mel-1 (melanoma) or Raji (lymphoma) targets consistently led to increased phosphorylation of two 65-kD LAK proteins pp65a and -b, with isoelectric points (pI) of 5.1 and 5.2 respectively. Increased p65 phosphorylation was initiated between 1 and 5 min after tumor coincubation, occurred on Ser residues, required physical contact between LAK and tumors, correlated with target recognition, and also occurred after crosslinking Fc$\gamma$RIIIA in the absence of tumors. Both pp65a and -b were tentatively identified as phosphorylated forms of the actin-bundling protein L-plastin, based on pI, molecular weight, and cross-reactivity with specific antiserum. The known biochemical properties of L-plastin suggest it may be involved in regulating adhesion of LAK to tumor targets. The protein tyrosine kinase-specific inhibitor Herb A did not block p65 phosphorylation, but blocked LAK killing of multiple tumor targets at a post-binding stage. Greater than 50% inhibition of cytotoxicity was observed after a 2.5-h pretreatment with 0.125 $\mu$g/ml Herb A. Inhibition occurred over a period in pretreatment which LAK were not dependent upon IL-2 for maintenance of killing activity, supporting the conclusion that the drug interfered with mobilization of cytotoxic function. Granule exocytosis measured by BLT-esterase release from LAK occurred after coincubation with tumors, and was inhibited by Herb A LAK cytotoxicity was dependent upon extracellular calcium, suggesting that granule exocytosis rather than Fas ligand was the principal pathway leading to target cell death. The data indicate that protein tyrosine kinases play a pivotal role in LAK cytolytic function by regulating granule exocytosis, and that tumor targets can activate an adhesion dependent Ser kinase pathway in LAK resulting in phosphorylation of L-plastin. ^