854 resultados para piezoelectric composites
Resumo:
Flexible and free-standing films of piezoelectric composites made up of lead zirconate titanate (PZT) ceramic powder dispersed in a castor oil-based polyurethane (PU) matrix were obtained by spin coating and characterised as materials for sensor applications. The piezoelectric coefficients d(31) and d(33) were measured with the usual technique. The piezoelectric charge constant d(33) yields values up to less than or equal to 24 pC/N, even at lower PZT content (33 vol%). Some desirable properties like piezoelectricity, flexibility and good mechanical resistance show this new material to be a good alternative for use as sensors and actuators.
Resumo:
Flexible and free-standing films of piezoelectric composites made up of lead zirconate titanate (PZT) ceramic powder dispersed in a castor oil-based polyurethane (PU) matrix were obtained by spin coating and characterized as materials for sensor applications. The piezoelectric coefficients d 31 and d 33 were measured with the usual technique. The piezoelectric charge constant d 33 yields values up to ≤24 pC/N, even at lower PZT content (33 vol%). Some desirable properties like piezoelectricity, flexibility and good mechanical resistance show this new material to be a good alternative for use as sensors and actuators.
Resumo:
Structural health monitoring (SHM) refers to the procedure of assessing the structure conditions continuously so it is an alternative to conventional nondestructive evaluation (NDE) techniques [1]. With the growing developments in sensor technology acoustic emission (AE) technology has been attracting attention in SHM applications. AE are characterized by waves produced by the sudden internal stress redistribution caused by the changes in the internal structure, such as fatigue, crack growth, corrosion, etc. Piezoelectric materials such as Lead Zirconate Titanate (PZT) ceramic have been widely used as sensor due to its high electromechanical coupling factor and piezoelectric d coefficients. Because of the poor mechanical characteristic and the lack in the formability of the ceramic, polymer matrix-based piezoelectric composites have been studied in the last decade in order to obtain better properties in comparison with a single phase material. In this study a composite film made of polyurethane (PU) and PZT ceramic particles partially recovered with polyaniline (PAni) was characterized and used as sensor for AE detection. Preliminary results indicate that the presence of a semiconductor polymer (PAni) recovering the ceramic particles, make the poling process easier and less time consuming. Also, it is possible to observe that there is a great potential to use such type of composite as sensor for structure health monitoring.
Resumo:
Composites polymer-ceramic using castor oil-based polyurethane (PU) as non-ferroelectric matrix and Lead Zirconate Titanate (PZT) as ceramic powder have been prepared at thin films form by spin coating. The samples are poled by appropriated electric field to show piezo and pyroelectric activity. The pyroelectric coefficient p(T) at 343 K is obtained to be equal 5.8 X 10(-5) C m(-2) K-1 for a composite with 32 vol.% of ceramic. The figure of merit of this composite is six times higher than of PZT ceramic. The voltage responsivity of the pyroelectric is reduced when the thickness of the sample increases. It was used modulated white light as radiation source to excite the sensor film. The electric signal of the sensor decreases with the light modulation frequency by 1/f. (C) 1999 Elsevier B.V. S.A. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A finite element homogenization method for a shear actuated d(15) macro-fibre composite (MFC) made of seven layers (Kapton, acrylic, electrode, piezoceramic fibre and epoxy composite, electrode, acrylic, Kapton) is proposed and used for the characterization of its effective material properties. The methodology is first validated for the MFC active layer only, made of piezoceramic fibre and epoxy, through comparison with previously published analytical results. Then, the methodology is applied to the seven-layer MFC. It is shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k(15) and piezoelectric stress constant e(15) when compared to the piezoceramic fibre properties. However, it is found that the piezoelectric charge constant d(15) is less affected by the softer layers required by the MFC packaging.
Resumo:
The energy harvesting efficiency of electrospun poly(vinylidene fluoride), its copolymer vinylidene fluoride-trifluoroethylene and composites of the later with piezoelectric BaTiOon interdigitated electrodes has been investigated. Further, a study of the influence of the electrospinning processing parameters on the size and distribution of the composites fibers has been performed. It is found that the best energy harvesting performance is obtained for the pure poly(vinylidene fluoride) fibers, with power outputs up to 0.03 W and 25 W under low and high mechanical deformation. The copolymer and the composites show reduced power output due to increased mechanical stiffness. The obtained values, among the largest found in the literature, the easy processing and the low cost and robustness of the polymer, demonstrate the applicability of the developed system.
Resumo:
A previous study on the characterization of effective material properties of a d(15) thickness-shear piezoelectric Macro-Fibre Composite (MFC) made of seven layers (Kapton, Acrylic, Electrode, Piezoceramic Fibre and Epoxy Composite, Electrode, Acrylic, Kapton) using a finite element homogenization method has shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k(15) and piezoelectric stress constant e(15) when compared to the piezoceramic fibre properties. Therefore, the main objective of this work is to perform a parametric analysis in which the effect of the variations of fibre volume fraction, Epoxy elastic modulus, electrode thickness and active layer thickness on the MFC effective material properties is evaluated. Results indicate that an effective d(15) MFC should use relatively thick fibres having relatively high shear modulus and relatively stiff epoxy filler. On the other hand, the electrode thickness does not affect significantly the MFC performance.
Resumo:
A previous study on the characterization of effective material properties of a d15 thickness-shear piezoelectric Macro-Fibre Composite (MFC) made of seven layers (Kapton, Acrylic, Electrode, Piezoceramic Fibre and Epoxy Composite, Electrode, Acrylic, Kapton) using a finite element homogenization method has shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k15 and piezoelectric stress constant e15 when compared to the piezoceramic fibre properties. Therefore, the main objective of this work is to perform a parametric analysis in which the effect of the variations of fibre volume fraction, Epoxy elastic modulus, electrode thickness and active layer thickness on the MFC effective material properties is evaluated. Results indicate that an effective d15 MFC should use relatively thick fibres having relatively high shear modulus and relatively stiff epoxy filler. On the other hand, the electrode thickness does not affect significantly the MFC performance.
Resumo:
This work presents a critical analysis of methodologies to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) for structures with piezoelectric elements. First, a review of several existing methodologies to evaluate material and effective EMCC is presented. To illustrate the methodologies, a comparison is made between numerical, analytical and experimental results for two simple structures: a cantilever beam with bonded extension piezoelectric patches and a simply-supported sandwich beam with an embedded shear piezoceramic. An analysis of the electric charge cancelation effect on the effective EMCC observed in long piezoelectric patches is performed. It confirms the importance of reinforcing the electrodes equipotentiality condition in the finite element model. Its results indicate also that smaller (segmented) and independent piezoelectric patches could be more interesting for energy conversion efficiency. Then, parametric analyses and optimization are performed for a cantilever sandwich beam with several embedded shear piezoceramic patches. Results indicate that to fully benefit from the higher material coupling of shear piezoceramic patches, attention must be paid to the configuration design so that the shear strains in the patches are maximized. In particular, effective square EMCC values higher than 1% were obtained embedding nine well-spaced short piezoceramic patches in an aluminum/foam/aluminum sandwich beam.
Resumo:
A unidirectional fiber composite is considered here, the fibers of which are empty cylindrical holes periodically distributed in a transversely isotropic piezoelectric matrix, The empty-fiber cross-section is circular and the periodicity is the same in two directions at an angle pi/2 or pi/3. Closed-form formulae for all electromechanical effective properties of these 3-1 longitudinally periodic porous piezoelectric materials are presented. The derivation of such expressions is based on the asymptotic homogenization method as a limit of the effective properties of two-phase transversely isotropic parallel fiber-reinforced composites when the fibers properties tend to zero. The plane effective coefficients satisfy the corresponding Schulgasser-Benveniste-Dvorak universal type of relations, A new relation among the antiplane effective constants from the solutions of two antiplane strains and potential local problems is found. This relation is valid for arbitrary shapes of the empty-fiber cross-sections. Based on such a relation, and using recent numerical results for isotropic conductive composites, the antiplane effective properties are computed for different geometrical shapes of the empty-fiber cross-section. Comparisons with other analytical and numerical theories are presented. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The technique of permanently attaching piezoelectric transducers to structural surfaces has demonstrated great potential for quantitative non-destructive evaluation and smart materials design. For thin structural members such as composite laminated plates, it has been well recognized that guided Lamb wave techniques can provide a very sensitive and effective means for large area interrogation. However, since in these applications multiple wave modes are generally generated and the individual modes are usually dispersive, the received signals are very complex and difficult to interpret. An attractive way to deal with this problem has recently been introduced by applying piezoceramic transducer arrays or interdigital transducer (IDT) technologies. In this paper, the acoustic wave field in composite laminated plates excited by piezoceramic transducer arrays or IDT is investigated. Based on dynamic piezoelectricity theory, a discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the input impedance characteristics of the transducer and the surface velocity response of the plate. The method enables the quantitative evaluation of the influence of the electrical characteristics of the excitation circuit, the geometric and piezoelectric properties of the transducer array, and the mechanical and geometrical features of the laminate. Numerical results are presented to validate the developed method and show the ability of single wave mode selection and isolation. The results show that the interaction between individual elements of the piezoelectric array has a significant influence on the performance of the IDT, and these effects can not be neglected even in the case of low frequency excitation. It is also demonstrated that adding backing materials to the transducer elements can be used to improve the excitability of specific wave modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Functionally graded materials are composite materials wherein the composition of the constituent phases can vary in a smooth continuous way with a gradation which is function of its spatial coordinates. This characteristic proves to be an important issue as it can minimize abrupt variations of the material properties which are usually responsible for localized high values of stresses, and simultaneously providing an effective thermal barrier in specific applications. In the present work, it is studied the static and free vibration behaviour of functionally graded sandwich plate type structures, using B-spline finite strip element models based on different shear deformation theories. The effective properties of functionally graded materials are estimated according to Mori-Tanaka homogenization scheme. These sandwich structures can also consider the existence of outer skins of piezoelectric materials, thus achieving them adaptive characteristics. The performance of the models, are illustrated through a set of test cases. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The manipulation of electric ordering with applied magnetic fields has been realized on magnetoelectric (ME) materials, however, their ME switching is often accompanied by significant hysteresis and coercivity that represents, for some applications, a severe weakness. To overcome this obstacle, this work focus on the development of a new type of ME polymer nanocomposites that exhibits tailored ME response at room temperature. The multiferroic nanocomposites are based on three different ferrite nanoparticles, Zn0.2Mn0.8Fe2O4 (ZMFO), CoFe2O4 (CFO) and Fe3O4 (FO), dispersed in a piezoelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE), matrix. No substantial differences were detected on the time-stable piezoelectric response of the composites (≈ -28 pC.N−1) with distinct ferrite fillers and for the same ferrite content of 10wt.%. Magnetic hysteresis loops from pure ferrite nanopowders showed different magnetic responses. ME results of the nanocomposite films with 10wt.% ferrite content revealed that the ME induced voltage increases with increasing DC magnetic field until a maximum of 6.5 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.26 T, and 0.8 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.15T, for the CFO/P(VDF-TrFE) and FO/P(VDF-TrFE) composites, respectively. On the contrary, the ME response of the ZMFO/P(VDF-TrFE) exposed no hysteresis and high dependence on the ZMFO filler content. Possible innovative applications such as memories and information storage, signal processing, ME sensors and oscillators have been addressed for such ferrite/PVDF nanocomposites.
Resumo:
The last decade has witnessed an increased research effort on multi-phase magnetoelectric (ME) composites. In this scope, this paper presents the application of novel materials for the development of anisotropic magnetoelectric (ME) sensors based on δ-FeO(OH)/P(VDF-TrFE) composites. The composite is able to precisely determine the amplitude and direction of the magnetic field. A new ME effect is reported in this study, as it emerges from the magnetic rotation of the δ-FeO(OH) nanosheets inside the piezoelectric P(VDF-TrFE) polymer matrix. δ-FeO(OH)/P(VDF-TrFE) composites with 1, 5, 10 and 20 δ-FeO(OH) filler weigh percentage in three δ-FeO(OH) alignment states (random, transversal and longitudinal) have been developed. Results shown that the modulus of the piezoelectric response (10-24 pC.N-1) is stable at least up to three months, the shape and magnetization maximum value (3 emu.g-1) is dependent on δ-FeO(OH) content and the obtained ME voltage coefficient, with a maximum of ≈0.4 mV.cm-1.Oe-1, is dependent on the incident magnetic field direction and intensity. In this way, the produced materials are suitable for innovative anisotropic sensor and actuator applications.