28 resultados para picloram
Resumo:
In the structure of the title complex [[Na(H2O)3]+ (C6H2Cl3N2O2)-^ . 3(H2O)]n, the Na salt of the herbicide picloram, the cation is a polymeric chain structure, based on doubly water-bridged NaO5 trigonal bipyramidal complex units which have in addition, a singly-bonded monodentate water molecule. Each of the bridges within the chain which lies along the a cell direction is centrosymmetric with Na...Na separations of 3.4807(16) and 3.5109(16)Ang. In the crystal, there are three water molecules of solvation and these, as well as the coordinated water molecules and the amino group of the 4-amino-3,5,6-trichloropicolinate anion are involved in extensive inter-species hydrogen-bonding interactions with carboxyl and water O-atoms as well as the pyridine N-atom. Among these association is a centrosymmetric cyclic tetra-water R4/4(8) ring , resulting in an overall three-dimensional structure.
Resumo:
Tesis (Maestría en Ciencias con orientación en Química Analítica Ambiental) UANL, 2014.
Resumo:
The aim of this study was to evaluate the acute toxicity of atrazine and picloram separately to grass carp (Ctenopharyngodon idella). Firstly, fingerlings were exposed to nominal concentrations of these herbicides to determine the lethal concentration (LC50) (96 h). After this, the animals were treated with sub-acute concentrations of the herbicides to measure the effects on gill histology. The LC50 (96 h) of the atrazine and picloram were, respectively, 37mg L-1 and 4.4 mgL(-1). Four types of alterations were found in gills exposed to atrazine, which were epithelial lifting, partial cell proliferation, lamellar fusion, and aneurysm. Nominal concentrations of picloram caused epithelial lifting, partial cell proliferation, and lamellar fusion.
Resumo:
Mode of access: Internet.
Resumo:
2008
Resumo:
O tucumã-do-pará (Astrocaryum vulgare Mart.) é uma palmeira oleaginosa que apresenta potencial para a indústria de biocombustíveis. Devido ao longo período de germinação das sementes, a obtenção de mudas em grande quantidade ainda não é possível pelos métodos tradicionais de propagação. Este trabalho objetivou o cultivo in vitro de embriões zigóticos de tucumã-do-pará excisados de frutos imaturos para a indução à embriogênese somática. Frutos imaturos foram coletados e, após o processamento, os embriões foram inoculados em meio de cultura MS com 4 concentrações de picloram: 0; 120; 240 e 360 M. Após 90 dias, verificaram-se porcentagens de viabilidade superiores a 80% para todos os tratamentos, indução de estruturas semelhantes à embriões somáticos superior a 50% em meio de cultura com picloram e maior crescimento do explante na concentração de 120 M, diâmetro médio superior aos demais. Houve somente formação de plântulas em meio de cultura livre de regulador de crescimento. O cultivo in vitro de embriões zigóticos de tucumã-do-pará é viável, gera plântulas após 90 dias de cultivo em meio de cultura sem regulador de crescimento e os embriões excisados de frutos imaturos são induzidos a estruturas semelhantes a embriões somáticos pela ação do picloram a partir de 120 ?M via embriogênese somática. O método de assepsia adotado propicia isenção total de contaminações.
Resumo:
In the structure of the title complex, [Cs(C6H2Cl3N2O2)(H2O)]n, the caesium salt of the commercial herbicide picloram, the Cs+ cation lies on a crystallographic mirror plane, which also contains the coordinating water molecule and all non-H atoms of the 4-amino-3,5,6-trichloropicolinate anion except the carboxylate O-atom donors. The irregular CsCl4O5 coordination polyhedron comprises chlorine donors from the ortho-related ring substituents of the picloramate ligand in a bidentate chelate mode, with a third chlorine bridging [Cs-Cl range 3.6052 (11)-3.7151 (11) Å] as well as a bidentate chelate carboxylate group giving sheets extending parallel to (010). A three-dimensional coordination polymer structure is generated through the carboxylate group, which also bridges the sheets down [010]. Within the structure, there are intra-unit water O-HOcarboxylate and amine N-HNpyridine hydrogen-bonding interactions.
Resumo:
Calotrope [Calotropis procera (Aiton) W.T.Aiton] is an exotic shrub or small tree species that is currently invading the tropical savannahs of northern Australia. A chemical trial involving 11 herbicides and four application methods (foliar, basal bark, cut stump and soil applied) was undertaken to identify effective chemicals to control calotrope. Of the foliar herbicides tested, imazapyr provided 100% mortality at the rates applied, and the higher rate of metsulfuron-methyl killed 100% of the treated plants. The herbicides 2,4-D butyl ester, fluroxypyr, triclopyr and triclopyr/picloram killed greater than 80% of the plants when applied by a basal bark or cut stump (when cut 5cm above ground level) method of application. Plants cut close to ground level (5cm) were controlled more effectively than plants cut 20cm above ground level. Chemical control (foliar and cut stump spraying) is a cost effective tool to treat calotrope densities <800plants/ha. Adoption of pasture management practices that promote perennial grasses, in conjunction with strategic chemical control, would further increase the effectiveness and reduce the costs of controlling vast areas of this weed.
Resumo:
The liana, hiptage (Hiptage benghalensis), is currently invading the wet tropics of northern Queensland and remnant bushland in south-eastern Queensland, Australia. Trials using seven herbicides and three application methods (foliar, basal bark, and cut stump) were undertaken at a site in north Queensland (158 700 hiptage plants ha−1). The foliar-applied herbicides were only effective in controlling the hiptage seedlings. Of the foliar herbicides trialed, dicamba, fluroxypyr, and triclopyr/picloram controlled >75% of the treated seedlings. On the larger plants, the cut stump applications were more effective than the basal bark treatments. Kills of >95% were obtained when the plants were cut close to ground level (5 cm) and treated with herbicides that were mixed with diesel (fluroxypyr and triclopyr/picloram), with water (glyphosate), or were applied neat (picloram). The costings for the cut stump treatment of a hiptage infestation (85 000 plants ha−1), excluding labor, would be $A14 324 ha−1 using picloram and $A5294 ha−1 and $A2676 ha−1, respectively, using glyphosate and fluroxypyr. Foliar application using dicamba for seedling control would cost $A1830 ha−1. The costs range from 2–17 cents per plant depending on the treatment. A lack of hiptage seeds below the soil surface, a high germinability (>98%) of the viable seeds, a low viability (0%) of 2 year old, laboratory-stored fruit, and a seedling density of 0.1 seedlings m−2 12 months after a control program indicate that hiptage might have a short-term seed bank. Protracted recolonization from the seed bank would therefore be unlikely after established seed-producing plants have been controlled.
Resumo:
Quilpie mesquite (Prosopis velutina) is an invasive woody weed that is believed to have been introduced into south-west Queensland in the 1930s. Following the withdrawal of 2,4,5-T, research on P. pallida resulted in revised recommendations for control of all Prosopis spp. in Queensland. Adoption of many of these recommendations for Quilpie mesquite control produced substandard results. Following a pilot trial, a shade-house experiment was conducted to determine the differences in susceptibility of two species of mesquite, P. velutina and P. pallida, to commonly available herbicides. It was hypothesized that P. velutina was less susceptible than P. pallida, based upon claims that the registered chemical recommendations for Prosopis spp. were not sufficiently effective on P. velutina. Nine foliar herbicide treatments were applied to potted shade-house plants. Treatment effects indicated differing susceptibility between the two species. P. velutina consistently showed less response to metsulfuron, fluroxypyr, 2,4-D/picloram and triclopyr/picloram, compared to the glyphosate formulations, where negligible differences occurred between the two species. The response to glyphosate was poor at all rates in this experiment. Re-application of herbicides to surviving plants indicated that susceptibility can decrease when follow-up application is in autumn and the time since initial application is short. The relationship between leaf structure and the volume of spray adhering to a plant was assessed across species. The herbicide captured by similar-sized plants of each species differed, with P. pallida retaining a greater volume of herbicide.
Resumo:
In the rangelands of northern Australia, basal bark, cut stump, hand applied residual herbicides and foliar spraying have traditionally been the main herbicide techniques for control of individual exotic woody weeds growing within scattered to medium density infestations. In this paper we report on the preliminary results of stem injection as an alternate technique for the control of yellow oleander ( Cascabela thevetia (L.) Lippold), a woody weed that is difficult to kill. A randomised complete block experiment comprising 12 herbicide treatments (including a control) and three replicates was undertaken. Two rates of triclopyr + picloram, hexazinone, glyphosate, 2,4- D + picloram and metsufuron methyl and one rate of imazapyr were tested. At 15 months after application, triclopyr + picloram, glyphosate, 2,4-D + picloram and imazapyr all recorded high mortality (>90%) for at least one application rate. These results suggest that stem injection warrants further investigation as a control technique for other exotic woody weeds growing in rangelands.
Resumo:
Siam Weed (Chromoleana odorata) is the target of an eradication program in north Queensland; however some infestations occur on ground inaccessible to high volume, ground based herbicide spray equipment. Four foliar herbicides were applied to dense infestations of mature Siam Weed in March 2009, near Townsville, north Queensland. Low volume, high concentration solutions containing 40 g L-1 a.i. glyphosate, 1.2 g L-1 a.i metsulfuron-methyl, 10 g L-1 a.i. fluroxypyr + 0.7 g L-1 a.i. aminopyralid and 15 g L-1 a.i. triclopyr + 5 g L-1 a.i. picloram + 0.4 g L-1 a.i. aminopyralid were applied using a 5 L backpack and hand gun (or splatter gun). Relatively small amounts (approximately 24-28 mL) of the high concentration solutions were applied to each bush and assessments of the replicated treated and untreated control plots were conducted 76, 207 and 356 days after treatment. These assessments demonstrated that the fluroxypyr and triclopyr based herbicides controlled 96 to 100% of plants. The metsulfuron-methyl and glyphosate based herbicides controlled 40 and 57% of plants respectively 12 months after treatment, when 3% of untreated control plants were dead. The trial demonstrated that this application method and either of two herbicides provides an additional tool for controlling Siam weed in remote areas, which are inaccessible to traditional higher volume foliar herbicide applications. Lower volume herbicide solutions reduce the volume of water and thus the effort needed to effectively treat less accessible infestations.
Resumo:
In the last decade, Conyza bonariensis has become a widespread and difficult-to-control weed in Australian broad-acre cropping, particularly in glyphosate-based zero-tilled fallows of the subtropical grain region. The first Australian populations of C. bonariensis, where it is known as flaxleaf fleabane, were confirmed resistant to glyphosate in 2010. Control with alternative herbicides in fallows has been inconsistent, with earlier research indicating that weed age could be a potential contributing factor. In two field experiments, the impact of weed age (one, two and three months) was measured on the efficacy of six non-selective herbicide mixtures and sequential applications for control in fallows. In another two experiments we evaluated 11 non-selective herbicides, mixtures and sequential applications applied to one and three month old weeds using higher rates on older weeds. When herbicide rates were consistent for different weed ages, efficacy was reduced only by an average of 1% when two month old weeds were treated compared to one month old weeds. However when applied to three month old weeds, efficacy of treatments was significantly (P < 0.001) reduced by 3-30%. When herbicide rates were increased, weed age had no adverse effect on efficacy, which ranged from 90 to 100%, for amitrole, glyphosate mixed with 2,4-D amine plus picloram, and three sequential application treatments of glyphosate mixtures followed with bipyridyl products. Thus, this problem weed can be controlled effectively and consistently at the rosette stage of one to two months old, or three month old weeds with several different treatments at robust rates. These effective glyphosate alternatives and sequential-application tactics will minimise replenishment of the soil seed-bank and further reduce the risk for further evolution of glyphosate resistance. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conyza bonariensis is a major weed infesting zero-tilled cropping systems in subtropical Australia, particularly in wheat and winter fallows. Uncontrolled C.bonariensis survives to become a problem weed in the following crops or fallows. As no herbicide has been registered for C.bonariensis in wheat, the effectiveness of 11 herbicides, currently registered for other broad-leaved weeds in wheat, was evaluated in two pot and two field experiments. As previous research showed that the age of C.bonariensis, and to a lesser extent, the soil moisture at spraying affected herbicide efficacy, these factors also were investigated. The efficacy of the majority of herbicide treatments was reduced when large rosettes (5-15cm diameter) were treated, compared with small rosettes (<5cm diameter). However, for the majority of herbicide treatments, the soil moisture did not affect the herbicide efficacy in the pot experiments. In the field, a delay in herbicide treatment of 2 weeks reduced the herbicide efficacy consistently across herbicide treatments, which was related to weed age but not to soil moisture differences. Across all the experiments, four herbicides controlled C.bonariensis in wheat consistently (83-100%): 2,4-D; aminopyralid + fluroxypyr; picloram + MCPA + metsulfuron; and picloram + high rates of 2,4-D. Thus, this problem weed can be effectively and consistently controlled in wheat, particularly when small rosettes are treated, and therefore C.bonariensis will have a less adverse impact on the following fallow or crop.
Resumo:
Sticky florestina (Florestina tripteris DC.) is an annual exotic weed that has become naturalised near the townships of Tambo and Barcaldine in central western Queensland, Australia. Three experiments conducted near Barcaldine identified foliar herbicides effective in killing sticky florestina plants and in providing residual activity to reduce recruitment from the soil seed bank. An initial chemical screening experiment evaluated the efficacy of 28 herbicide treatments. The most promising herbicides were then further evaluated in two response-rate experiments. Overall, 2,4-D/picloram, aminopyralid/fluroxypyr, clopyralid, metsulfuron-methyl and triclopyr/picloram proved to be the most effective selective herbicides. Two of these, metsulfuron-methyl at 18 g active ingredient (a.i) ha–1 and 2,4-D + picloram at 900 g a.i. ha–1 + 225 g a.i. ha–1 have now been included in a minor use permit (PER11920) with the Australian Pesticides and Veterinary Medicines Authority (APVMA) for the control of sticky florestina in pasture, stock route, roadside and non-crop situations using both spot and boom-spray applications (APVMA 2010). The permit also allows the use of 2,4-D amine for the control of seedlings only.