993 resultados para piñón


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A continuum method of analysis is presented in this paper for the problem of a smooth rigid pin in a finite composite plate subjected to uniaxial loading. The pin could be of interference, push or clearance fit. The plate is idealized to an orthotropic sheet. As the load on the plate is progressively increased, the contact along the pin-hole interface is partial above certain load levels in all three types of fit. In misfit pins (interference or clearance), such situations result in mixed boundary value problems with moving boundaries and in all of them the arc of contact and the stress and displacement fields vary nonlinearly with the applied load. In infinite domains similar problems were analysed earlier by ‘inverse formulation’ and, now, the same approach is selected for finite plates. Finite outer domains introduce analytical complexities in the satisfaction of boundary conditions. These problems are circumvented by adopting a method in which the successive integrals of boundary error functions are equated to zero. Numerical results are presented which bring out the effects of the rectangular geometry and the orthotropic property of the plate. The present solutions are the first step towards the development of special finite elements for fastener joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Joints are primary sources of weakness in structures. Pin joints are very common and are used where periodic disassembly of components is needed. A circular pin in a circular hole in an infinitely large plate is an abstraction of such a pin joint. A two-dimensional plane-stress analysis of such a configuration is carried out, here, subjected to pin-bearing and/or biaxial-plate loading. The pin is assumed to be rigid compared to the plate material. For pin load the reactive stresses at the edges of the infinite plate tend to zero though their integral over the external boundary equals to the pin load. The pin-hole interface is unbonded and so beyond some load levels the plate separates from the pin and the extent of separation is a non-linear function of load level. The problem is solved by inverse technique where the extent of contact is specified and the causative loads are evaluated directly. In the situations where combined load is acting the separation-contact zone specification generally needs two parameters (angles) to be specified. The present report deals with analysing such a situation in metallic (or isotropic) plates. Numerical results are provided for parametric representation and the methodology is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pin-loaded holes commonly occur in engineering structures. However, accurate analysis of such holes presents formidable difficulties because of the load-dependent contact of the pin with the plate. Significant progress has recently been achieved in the analysis of holes in isotropic plates. This paper develops a simple and accurate method for the partial contact analysis of pin-loaded holes in composites. The method is based on an inverse formulation that seeks to determine loads in a given contact-separation configuration. A unified approach for all types of fit was used. Continuum solutions were obtained for infinitely large plates of various typical orthotropic properties with holes loaded by smooth rigid pins. These solutions were then compared with those for isotropic plates. The effects of orthotropy and the type of fit were studied through load-contact relationships, distribution of stresses and displacements, and their variation with load. The results are of direct relevance to the analysis and design of pin joints in composite plates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of misfit (interference or clearance) pin in a large orthotropic plate was solved earlier by the authors for biaxial loading in the principal directions of orthotropy. Here, a more general case of arbitrarily oriented loading is considered. The most important aspect of the problem studied is the partial contact at the pin-hole interface. The solution is obtained by extending the use of ‘inverse technique’ which was successfully applied earlier by the authors to problems of pins in isotropic and orthotropic domains. The loss of symmetry because of the arbitrary orientation of loading makes the problem more complex. Additional parameters are then involved in the inversion of the problem for the solution. Numerical results are presented primarily for a smooth interference fit pin in a typical orthotropic plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, sliding experiments were conducted using pure magnesium pins against steel plates using an inclined pin-on-plate sliding tester. The inclination angle of the plate was varied in the tests and for each inclination angle, the pins were slid both perpendicular and parallel to the unidirectional grinding marks direction under both dry and lubricated conditions. SEM was used to study morphology of the transfer layer formed on the plates. Surface roughness of plates was measured using an optical profilometer. Results showed that the friction, amplitude of stick-slip motion and transfer layer formation significantly depend on both inclination angle and grinding marks direction of the plates. These variations could be attributed to the changes in the level of plowing friction taking place at the asperity level during sliding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates numerically the heat transfer characteristics of confined slot jet impingement on a pin-fin heat sink. A variety of pin-fin heat sinks is investigated, and the resulting enhancement of heat transfer studied. The distribution of heat transfer coefficient on the top surface of the base plate and that along the fin height are examined. Both steady and pulsated jets are studied. It is observed that for a steady jet impingement on a pin-fin heat sink, the effective heat transfer coefficient increases with fin height, leading to a corresponding decrease in base plate temperature for the same heat flux. In the case of pulsated jets, the influence of pulse frequency and the Reynolds number is examined, and their effect on the effective heat transfer coefficient is studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface texture of harder mating surfaces plays an important role during sliding against softer materials and hence the importance of characterizing the surfaces in terms of roughness parameters. In the present investigation, basic studies were conducted using inclined pin-on-plate sliding tester to understand the surface texture effect of hard surfaces on coefficient of friction and transfer layer formation. A tribological couple made of a super purity aluminium pin against steel plate was used in the tests. Two surface parameters of steel plates, namely roughness and texture, were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture and are independent of surface roughness (R-a). Among the various surface roughness parameters, the average or the mean slope of the profile was found to explain the variations best. Under lubricated conditions, stick-slip phenomena was observed, the amplitude of which depends on the plowing component of friction. The presence of stick-slip motion under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, unidirectional grinding marks were attained on the steel plates. Then aluminium (Al) pins were slid at 0.2°, 0.6°, 1.0°, 1.4°, 1.8°, 2.2° and 2.6° tilt angles of the plate with the grinding marks perpendicular and parallel to the sliding direction under both dry and lubricated conditions using a pin-on-plate inclined sliding tester to understand the influence of tilt angle and grinding marks direction of the plate on coefficient of friction and transfer layer formation. It was observed that the transfer layer formation and the coefficient of friction depend primarily on the grinding marks direction of the harder mating surface. Stick-slip phenomenon was observed only under lubricated conditions. For the case of pins slid perpendicular to the unidirectional grinding marks stick-slip phenomenon was observed for tilt angles exceeding 0.6°, the amplitude of which increases with increasing tilt angles. However, for the case of the pins slid parallel to the unidirectional grinding marks the stick-slip phenomena was observed for angles exceeding 2.2°, the amplitude of which also increases with increasing tilt angle. The presence of stick-slip phenomena under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suitable pin-to-hole interference can significantly increase the fatigue life of a pin joint. In practical design, the initial stresses due to interference are high and they are proportional to the effective interference. In experimental studies on such joints, difficulties have been experienced in estimating the interference accurately from physical measurements of pin and hole diameters. A simple photoelastic method has been developed to determine the effective interference to a high degree of accuracy. This paper presents the method and reports illustrative data from a successful application thereof.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of clearance fit joints falls within the realm of mixed boundary problems with moving boundaries. In this paper, this problem is solved by a simple continuum method of analysis applying an inverse technique; the region of contact is specified and the corresponding causative load is evaluated. Illustrations are given for a rigid clearance fit pin in a large elastic plate with smooth zero-shear interface between pin and plate, under biaxial plate stress at infinity and due to load transfer through pin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of large and fast digital computers and development of numerical techniques suited to these have made it possible to review the analysis of important fundamental and practical problems and phenomena of engineering which have remained intractable for a long time. The understanding of the load transfer between pin and plate is one such. Inspite of continuous attack on these problems for over half a century, classical solutions have remained limited in their approach and value to the understanding of the phenomena and the generation of design data. On the other hand, the finite element methods that have grown simultaneously with the recent development of computers have been helpful in analysing specific problems and answering specific questions, but are yet to be harnessed to assist in obtaining with economy a clearer understanding of the phenomena of partial separation and contact, friction and slip, and fretting and fatigue in pin joints. Against this background, it is useful to explore the application of the classical simple differential equation methods with the aid of computer power to open up this very important area. In this paper we describe some of the recent and current work at the Indian Institute of Science in this last direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical joints in composites can be tailored to achieve improved performance and better life by appropriately selecting the laminate parameters. In order to gain the best advantage of this possibility of tailoring the laminate, it is necessary to understand the influence of laminate parameters on the behaviour of joints in composites. Most of the earlier studies in this direction were based on simplified assumptions regarding load transfer at the pin-plate interface and such studies were only carried out on orthotropic and quasi-isotropic laminates. In the present study, a more rigorous analysis is carried out to study pin joints in laminates with anisotropic properties. Two types of laminates with (0/ + ?4/90)s and (0/ ± ?2/90)s layups made out of graphite epoxy T300/5208 material system are considered. The analysis mainly concentrates on clearance fit in which the pin is of smaller diameter compared to the hole. The main aspect of the analysis of pin joints is the changing contact between the pin and the plate with increasing load levels. The analysis is carried out by an iterative finite element technique and a computationally efficient routine is developed for this purpose. Numerical studies indicate that the location and magnitude of the peak stresses along the hole boundary are functions of fibre angle and the overall anisotropic properties. It is also shown that the conventional assumption of cosine distribution for the contact pressure between pin and the plate in the analysis lead to underestimation of bearing failure load and overestimation of shear and tensile failure loads in typical (0/905)s cross-ply laminates.