66 resultados para phytomass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to develop and validate equations to estimate the aboveground phytomass of a 30 years old plot of Atlantic Forest. In two plots of 100 m², a total of 82 trees were cut down at ground level. For each tree, height and diameter were measured. Leaves and woody material were separated in order to determine their fresh weights in field conditions. Samples of each fraction were oven dried at 80 °C to constant weight to determine their dry weight. Tree data were divided into two random samples. One sample was used for the development of the regression equations, and the other for validation. The models were developed using single linear regression analysis, where the dependent variable was the dry mass, and the independent variables were height (h), diameter (d) and d²h. The validation was carried out using Pearson correlation coefficient, paired t-Student test and standard error of estimation. The best equations to estimate aboveground phytomass were: lnDW = -3.068+2.522lnd (r² = 0.91; s y/x = 0.67) and lnDW = -3.676+0.951ln d²h (r² = 0.94; s y/x = 0.56).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to study the possible alterations in production, accumulation of the vegetative phytomass and nitrogen efficiency use of the maize crop, in different doses of N applied in the fertilization, by using the technique of isotopic dilution of (15)N. The completely randomized block experimental design was adopted, with 5 treatments and 4 replicates. The following treatments were constituted in the doses in covering: 0, 50, 100, 150 and 200 kg ha(-1) of N, with fertilization of N-urea, respectively. Comparisons among the treatments had been run for crop productivity; nitrogen accumulation for the plant, and use of the nitrogen of the urea-(15)N for the crop. The increase of the dose of N-fertilizer resulted in increase of the dry matter mass, of the dry matter yield crop tax, of the productivity and accumulation of N in the maize plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green manuring is recognized as a viable alternative to improve nutrient cycling in soils. The aim of this study was to evaluate the phytomass production and nutrient accumulation in shoots of the summer green manures jack bean [Canavalia ensiformis (L.) DC.], dwarf pigeon pea (Cajanus cajanvar var. Flavus DC.), dwarf mucuna [Mucuna deeringiana (Bort) Merr] and sunn hemp (Crotalaria juncea L.), under nitrogen fertilization and/or inoculation with N-fixing bacteria. A split plot design was arranged with the four Fabaceae species as main plots and nitrogen fertilization (with and without) and inoculation with diazotrophic bacteria (with and without) as the subplots, in a 2² factorial. The experiment was arranged as a randomized complete block design with four replications. In the conditions of this trial, the sunn hemp had the highest production of shoot phytomass (12.4 Mg ha-1) and nutrient accumulation, while the dwarf mucuna had the lowest production of shoot phytomass (3.9 Mg ha-1) and nutrient accumulation. The results showed no effect of nitrogen fertilization or inoculation with N-fixing bacteria on the production of shoot phytomass and nutrient accumulation, except for inoculation without nitrogen fertilization, resulting in greater P accumulation (p <0.05) in the sunn hemp and greater Zn and Mn accumulation in the dwarf mucuna. These findings indicate that N fertilization or inoculation with N2-fixing bacteria for Fabaceae are low efficiency practices in the edaphoclimatic conditions of this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to determine the effect of two sowing times on phytomass production of two varieties of Slylosanthes guianensis (var. pauciflora and var. vulgaris). Two experimental periods were studied (1: January - May/1998 and 2: November/1998 - March/1999) using a completely randomized factorial design 2 x 2 x 14 (two periods, two varieties and fourteen ages of evaluation), with four replications. The results showed a difference between the periods concerning the growth and development of Stylosanthes, and that period 2 was the most favourable to this forage plant. There was, also, different adaptability between the two varieties concerning the sowing times. The var. pauciflora was more adapted in period 1, and the var. vulgaris, in period 2. The data showed the possibility of selecting Stylosanthes cultivars adapted to different seasonal conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C/m**2. Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C/m**2 with LCC (land cover classification) upscaling and 32.5-49.0 kg C/m**2 with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 ± 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este estudo teve como objetivo desenvolver modelos preditores de fitomassa epigéa da vegetação arbórea da Floresta Baixa de Restinga. Foram selecionadas 102 árvores de 29 espécies ocorrentes na área de estudo e 102 indivíduos de jerivá (Syagrus romanzoffiana (Cham.) Glassman), distribuídos proporcionalmente entre as classes de diâmetro da vegetação arbórea. As árvores foram cortadas, ao nível do solo e foram medidos a altura total e o diâmetro à altura do peito (DAP) de cada árvore. As folhas foram separadas do lenho e a massa fresca da porção lenhosa e foliar medidas separadamente. Amostras de cada fração foram secas a 70 °C, até peso constante, para determinação da massa seca das árvores. Os modelos foram desenvolvidos através de análise de regressão linear, sendo a variável dependente a massa seca (MS) das árvores e as variáveis independentes a altura (h), o diâmetro a altura do peito (d) e as relações d² h e d² h multiplicada pela densidade da madeira (ρ d² h). Os modelos desenvolvidos indicam que o diâmetro explica grande parte da variabilidade da fitomassa das árvores da restinga e a altura é a variável explanatória da equação específica para o jerivá. Os modelos selecionados foram: ln MS (kg) = -1,352 + 2,009 ln d (R² = 0,96; s yx = 0,34) para a comunidade vegetal sem jerivá, ln MS (kg) = -2,052 + 0,801 ln d² h (R² = 0,94; s yx = 0,38) para a comunidade incluindo o jerivá, e ln MS (kg) = -0,884 + 2,40 ln h (R² = 0,92; s yx = 0,49) para o jerivá.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Echinolaena inflexa (Poir.) Chase is an abundant C3 grass species with high biomass production in the Brazilian savanna (cerrado); Melinis minutiflora Beauv. is an African C4 forage grass widespread in cerrado and probably displacing some native herbaceous species. In the present work, we analysed seasonally the content and composition of soluble carbohydrates, the starch amounts and the above-ground biomass (phytomass) of E. inflexa and M. minutiflora plants harvested in two transects at 5 and 130 m from the border in a restrict area of cerrado at the Biological Reserve and Experimental Station of Mogi-Guaçu (SP, Brazil). Results showed that water soluble carbohydrates and starch amounts from the shoots of both species varied according to the time of the year, whilst in the underground organs, variations were observed mainly in relation to the transects. Marked differences in the pattern of the above-ground biomass production between these two grasses relative to their location in the Reserve were also observed, with two peaks of the invasive species (July and January) at the Reserve border. The differences in carbohydrate accumulation, partitioning and composition of individual sugars concerning time of the year and location in the Reserve were more related to the annual growth cycle of both grasses and possibly to specific physiological responses of M. minutiflora to disturbed environments in the Reserve border.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the worldwide increase in demand for biofuels, the area cultivated with sugarcane is expected to increase. For environmental and economic reasons, an increasing proportion of the areas are being harvested without burning, leaving the residues on the soil surface. This periodical input of residues affects soil physical, chemical and biological properties, as well as plant growth and nutrition. Modeling can be a useful tool in the study of the complex interactions between the climate, residue quality, and the biological factors controlling plant growth and residue decomposition. The approach taken in this work was to parameterize the CENTURY model for the sugarcane crop, to simulate the temporal dynamics of aboveground phytomass and litter decomposition, and to validate the model through field experiment data. When studying aboveground growth, burned and unburned harvest systems were compared, as well as the effect of mineral fertilizer and organic residue applications. The simulations were performed with data from experiments with different durations, from 12 months to 60 years, in Goiana, TimbaA(0)ba and Pradpolis, Brazil; Harwood, Mackay and Tully, Australia; and Mount Edgecombe, South Africa. The differentiation of two pools in the litter, with different decomposition rates, was found to be a relevant factor in the simulations made. Originally, the model had a basically unlimited layer of mulch directly available for decomposition, 5,000 g m(-2). Through a parameter optimization process, the thickness of the mulch layer closer to the soil, more vulnerable to decomposition, was set as 110 g m(-2). By changing the layer of mulch at any given time available for decomposition, the sugarcane residues decomposition simulations where close to measured values (R (2) = 0.93), contributing to making the CENTURY model a tool for the study of sugarcane litter decomposition patterns. The CENTURY model accurately simulated aboveground carbon stalk values (R (2) = 0.76), considering burned and unburned harvest systems, plots with and without nitrogen fertilizer and organic amendment applications, in different climates and soil conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding resource capture can help design appropriate species combinations, planting designs and management. Leaf area index (LAI) and its longevity are the most important factors defining dry matter production and thus growth and productivity. The ecophysiological modifications and yield of rubber (Hevea spp.) in an agroforestry system (AFS) with beans (Phaseolus vulgaris L.) were studied. The experiment was established in Southeast-Brazil, with three rubber cultivars: IAN 3087, RRIM 600 and RRIM 527. The AFS comprised double rows of rubber trees along with beans sown in autumn and winter seasons in 1999. There was about 50% higher rubber yield per tree in the AFS than the rubber monoculture. Trees within the AFS responded to higher solar radiation availability with higher LAI and total foliage area, allowing its greater interception. All three cultivars had higher LAI in the AFS than monoculture, reaching maximum values in the AFS between April and May of 3.17 for RRIM 527; 2.83 for RRIM 600 and 2.28 for IAN 3087. The maximum LAI values for monocrop rubber trees were: 2.65, 2.62 and 1.99, respectively, for each cultivar. Rubber production and LAI were positively correlated in both the AFS and monoculture but leaf fall of rubber trees in the AFS was delayed and total phytomass was larger. It is suggested that trees in the AFS were under exploited and could yield more without compromising their life cycle if the tapping system was intensified. This shows how knowledge of LAI can be used to manage tapping intensity in the field, leading to higher rubber yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crop species with the C4 photosynthetic pathway are more efficient in assimilating N than C3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum) and congo grass (Brachiaria ruziziensis) with the C4 photosynthetic pathway, and black oat (Avena Strigosa) and triticale (X Triticosecale), with the C3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha-1 of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The decomposition of plant residues is a biological process mediated by soil fauna, but few studies have been done evaluating its dynamics in time during the process of disappearance of straw. This study was carried out in Chapecó, in southern Brazil, with the objective of monitoring modifications in soil fauna populations and the C content in the soil microbial biomass (C SMB) during the decomposition of winter cover crop residues in a no-till system. The following treatments were tested: 1) Black oat straw (Avena strigosa Schreb.); 2) Rye straw (Secale cereale L.); 3) Common vetch straw (Vicia sativa L.). The cover crops were grown until full flowering and then cut mechanically with a rolling stalk chopper. The soil fauna and C content in soil microbial biomass (C SMB) were assessed during the period of straw decomposition, from October 2006 to February 2007. To evaluate C SMB by the irradiation-extraction method, soil samples from the 0-10 cm layer were used, collected on eight dates, from before until 100 days after residue chopping. The soil fauna was collected with pitfall traps on seven dates up to 85 days after residue chopping. The phytomass decomposition of common vetch was faster than of black oat and rye residues. The C SMB decreased during the process of straw decomposition, fastest in the treatment with common vetch. In the common vetch treatment, the diversity of the soil fauna was reduced at the end of the decomposition process.