786 resultados para phylogeography, current, barrages, dams
Resumo:
In den letzten Jahrzehnten wurde eine deutliche, anhaltende Veränderung des globalen Klimas beobachtet, die in Zukunft zu einer Erhöhung der durchschnittlichen Oberflächentemperatur, erhöhten Niederschlagsmengen und anderen gravierenden Umweltveränderungen führen wird (IPCC 2001). Der Klimawandel wird in Flüssen sowohl mehr Extremereignisse verursachen als auch das Abflussregime bisher schmelzwasserdominierter Flüsse zu grundwassergespeisten hin ändern; dies gilt insbesondere für den Rhein (MIDDELKOOP et al. 2001). Um die möglichen Auswirkungen dieser Veränderungen auf die genetische Populationsstruktur von Makrozoobenthosorganismen vorhersagen zu können, wurden in den grundwassergespeisten Flüssen Main und Mosel sowie im Rhein Entnahmestellen oberhalb und unterhalb von Staustufen beprobt, die durch kontrastierende Strömungsverhältnisse als Modell für die zu erwartenden Änderungen dienten. Als Untersuchungsobjekt wurden Dreissena polymorpha PALLAS 1771 sowie Dikerogammarus villosus SOWINSKI 1894 herangezogen. Sie zeichnen sich durch hohe Abundanzen aus, sind aber unterschiedlich u.a. hinsichtlich ihrer Besiedlungsstrategie und –historie. Bei beiden Spezies sind die phylogeographischen Hintergründe bekannt; daher wurde auch versucht, die Einwanderungsrouten in der Populationsstruktur nachzuweisen (phylogeographisches Szenario). Dies konkurrierte mit der möglichen Anpassung der Spezies an das Abflussregime des jeweiligen Flusses (Adaptations-Szenario). Die Populationen wurden molekulargenetisch mit Hilfe der AFLP-Methode („Amplified-Fragment Length Polymorphism“) untersucht. Die Ergebnisse zeigen, dass D. polymorpha deutlich durch die Abflussregimes der Flüsse (Schmelz- oder Grundwasserdominanz) beeinflusst wird. Die Allelfrequenzen in Populationen des Rheins sind von denen der beiden grundwassergespeisten Flüsse Main und Mosel deutlich unterscheidbar (Adaptations-Szenario). Jedoch ist kein Unterschied der genetischen Diversitäten zu beobachten; das ist auf die lange Adaptation an ihre jeweiligen Habitate durch die lange Besiedlungsdauer zurückzuführen. Dies ist auch der Grund, warum die Einwanderungsrouten anhand der Populationsstruktur nicht mehr nachzuweisen waren. Die kontrastierenden Strömungsverhältnisse um die Staustufen hatten ebenfalls keine konsistenten Auswirkungen auf die genetische Diversität der Populationen. Diese Ergebnisse zeigen eine hohe phänotypische Plastizität der Spezies und dadurch eine große Anpassungsfähigkeit an wechselnde Umweltbedingungen, die unter anderem für den großen Erfolg dieser Spezies verantwortlich ist. D. villosus wanderte erst vor Kurzem in das Untersuchungsgebiet ein; die Einwanderungsroute war anhand der genetischen Diversität nachvollziehbar (phylogeographisches Szenario); durch die kurze Besiedlungsdauer war eine Adaptation an die divergenten Abflussregime der Flüsse nicht zu erwarten und wurde auch nicht gefunden. Dagegen war ein deutlicher negativer Einfluss von starker Strömung auf die genetische Diversität nachweisbar. Die Ergebnisse weisen darauf hin, dass die zukünftigen Auswirkungen des Klimawandels auf die Strömungsgeschwindigkeit negative Konsequenzen auf die genetische Diversität von D. villosus haben werden, während D. polymorpha hier keine Auswirkungen erkennen lässt. Die Auswirkungen des veränderten Abflussregimes im Rhein sind für D. villosus mit den vorliegenden Daten aufgrund der kurzen Besiedlungsdauer nicht vorhersagbar; D. polymorpha wird durch die Veränderung des Rheins zu einem grundwassergespeisten Fluss zwar einen Wandel in der genetischen Struktur erfahren, aber auch hier keine Einbußen in der genetischen Diversität erleiden.
Resumo:
"February 1985."
Resumo:
We assessed the genetic structure of populations of the widely distributed sea cucumber Holothuria (Holothuria) mammata Grube, 1840, and investigated the effects of marine barriers to gene flow and historical processes. Several potential genetic breaks were considered, which would separate the Atlantic and Mediterranean basins, the isolated Macaronesian Islands from the other locations analysed, and the Western Mediterranean and Aegean Sea (Eastern Mediterranean). We analysed mitochondrial 16S and COI gene sequences from 177 individuals from four Atlantic locations and four Mediterranean locations. Haplotype diversity was high (H = 0.9307 for 16S and 0.9203 for COI), and the haplotypes were closely related (p = 0.0058 for 16S and 0.0071 for COI). The lowest genetic diversities were found in the Aegean Sea population. Our results showed that the COI gene was more variable and more useful for the detection of population structure than the 16S gene. The distribution of mtDNA haplotypes, the pairwise FST values and the results of exact tests and AMOVA revealed: (i) a significant genetic break between the population in the Aegean Sea and those in the other locations, as supported by both mitochondrial genes, and (ii) weak differentiation of the Canary and Azores Islands from the other populations; however, the populations from the Macaronesian Islands, Algarve and West Mediterranean could be considered to be a panmictic metapopulation. Isolation by distance was not identified in H. (H.) mammata. Historical events behind the observed findings, together with the current oceanographic patterns, were proposed and discussed as the main factors that determine the population structure and genetic signature of H. (H.) mammata
Resumo:
In a previous study, we observed no spatial genetic structure in Mexican populations of the parasitoids Chelonus insularis Cresson (Hymenoptera: Braconidae) and Campoletis sonorensis Cameron (Hymenoptera: Ichneumonidae) by using microsatellite markers In the current study, we Investigated whether for these important parasitoids of the fall armyworm (Lepidoptera: Noctuidae) there is any genetic structure at a larger scale Insects of both species were collected across the American continent and their phylogeography was Investigated using both nuclear and mitochondria] markers Our results suggest an ancient north-south migration of C insularis, whereas no clear pattern] could be determined for C sonorensis. Nonetheless, the resulting topology indicated the existence of a cryptic taxon within this later species. a few Canadian specimens determined as C. sonorensis branch outside a clack composed of the Argentinean Chelonus grioti Blanchard, the Brazilian Chelonus flavicincta Ashmead, and the rest of the C sonorensis individuals The individuals revealing the cryptic taxon were collected from Thichoplusia in (Hubner) (Lepidoptera. Noctuidae) on tomato (Lycopersicon spp) and may represent a biotype that has adapted to the early season phenology of its host. Overall, the loosely defined spatial genetic structure previously shown at a local fine scale also was found at the larger scale, for both species Dispersal of these insects may be partly driven by wind as suggested by genetic similarities between Individuals coming from very distant locations.
Resumo:
Aim The aim of this study was to assess the causal mechanisms underlying populational subdivision in Drosophila gouveai, a cactophilic species associated with xeric vegetation enclaves in eastern Brazil. A secondary aim was to investigate the genetic effects of Pleistocene climatic fluctuations on these environments. Location Dry vegetation enclaves within the limits of the Cerrado domain in eastern Brazil. Methods We determined the mitochondrial DNA haplotypes of 55 individuals (representing 12 populations) based on sequence data of a 483-bp fragment from the cytochrome c oxidase subunit II (COII) gene. Phylogenetic and coalescent analyses were used to test for the occurrence of demographic events and to infer the time of divergence amongst genetically independent groups. Results Our analyses revealed the existence of two divergent subclades (G1 and G2) plus an introgressed clade restricted to the southernmost range of D. gouveai. Subclades G1 and G2 displayed genetic footprints of range expansion and segregated geographical distributions in south-eastern and some central highland regions, east and west of the Parana River valley. Molecular dating indicated that the main demographic and diversification events occurred in the late to middle Pleistocene. Main conclusions The phylogeographical and genetic patterns observed for D. gouveai in this study are consistent with changes in the distribution of dry vegetation in eastern Brazil. All of the estimates obtained by molecular dating indicate that range expansion and isolation pre-dated the Last Glacial Maximum, occurring during the late to middle Pleistocene, and were probably triggered by climatic changes during the Pleistocene. The current patchy geographical distribution and population subdivision in D. gouveai is apparently closely linked to these past events.
Resumo:
Whereas terrestrial animal populations might show genetic connectivity within a continent, marine species, such as hermatypic corals, may have connectivity stretching to all corners of the planet. We quantified the genetic variability within and among populations of the widespread scleractinian coral, Plesiastrea versipora along the eastern Australian seaboard (4145 km) and the Ryukyu Archipelago (Japan, 681 km) using sequences of internal transcribed spacers (ITS1-2) from ribosomal DNA. Geographic patterns in genetic variability were deduced from a nested clade analysis (NCA) performed on a parsimony network haplotype. This analysis allowed the establishment of geographical associations in the distribution of haplotypes within the network cladogram, therefore allowing us to deduce phylogeographical patterns based under models of restricted gene flow, fragmentation and range expansion. No significant structure was found among Ryukyu Archipelago populations. The lack of an association between the positions of haplotypes in the cladogram with geographical location of these populations may be accounted for by a high level of gene flow of P. versipora within this region, probably due to the strong Kuroshio Current. In contrast, strong geographical associations were apparent among populations of P. versipora along the south-east coast of Australia. This pattern of restricted genetic connectivity among populations of P. versipora on the eastern seaboard of Australia seems to be associated with the present surface ocean current (the East Australian Current) on this side of the south-western Pacific Ocean.
Resumo:
The aim of the present study was to investigate the genetic structure of the Valais shrew (Sorex antinorii) by a combined phylogeographical and landscape genetic approach, and thereby to infer the locations of glacial refugia and establish the influence of geographical barriers. We sequenced part of the mitochondrial cytochrome b (cyt b) gene of 179 individuals of S. antinorii sampled across the entire species' range. Six specimens attributed to S. arunchi were included in the analysis. The phylogeographical pattern was assessed by Bayesian molecular phylogenetic reconstruction, population genetic analyses, and a species distribution modelling (SDM)-based hindcasting approach. We also used landscape genetics (including isolation-by-resistance) to infer the determinants of current intra-specific genetic structure. The phylogeographical analysis revealed shallow divergence among haplotypes and no clear substructure within S. antinorii. The starlike structure of the median-joining network is consistent with population expansion from a single refugium, probably located in the Apennines. Long branches observed on the same network also suggest that another refugium may have existed in the north-eastern part of Italy. This result is consistent with SDM, which also suggests several habitable areas for S. antinorii in the Italian peninsula during the LGM. Therefore S. antinorii appears to have occupied disconnected glacial refugia in the Italian peninsula, supporting previous data for other species showing multiple refugia within southern refugial areas. By coupling genetic analyses and SDM, we were able to infer how past climatic suitability contributed to genetic divergence of populations. The genetic differentiation shown in the present study does not support the specific status of S. arunchi.
Resumo:
Schmidtea mediterranea (Platyhelminthes, Tricladida, Continenticola) is found in scattered localities on a few islands and in coastal areas of the western Mediterranean. Although S. mediterranea is the object of many regeneration studies, little is known about its evolutionary history. Its present distribution has been proposed to stem from the fragmentation and migration of the Corsica-Sardinia microplate during the formation of the western Mediterranean basin, which implies an ancient origin for the species. To test this hypothesis, we obtained a large number of samples from across its distribution area. Using known and new molecular markers and, for the first time in planarians, a molecular clock, we analysed the genetic variability and demographic parameters within the species and between its sexual and asexual populations to estimate when they diverged. Results: A total of 2 kb from three markers (COI, CYB and a nuclear intron N13) was amplified from ~200 specimens. Molecular data clustered the studied populations into three groups that correspond to the west, central and southeastern geographical locations of the current distribution of S. mediterranea. Mitochondrial genes show low haplotype and nucleotide diversity within populations but demonstrate higher values when all individuals are considered. The nuclear marker shows higher values of genetic diversity than the mitochondrial genes at the population level, but asexual populations present lower variability than the sexual ones. Neutrality tests are significant for some populations. Phylogenetic and dating analyses show the three groups to be monophyletic, with the west group being the basal group. The time when the diversification of the species occurred is between ~20 and ~4 mya, although the asexual nature of the western populations could have affected the dating analyses. Conclusions: S. mediterranea is an old species that is sparsely distributed in a harsh habitat, which is probably the consequence of the migration of the Corsica-Sardinia block. This species probably adapted to temperate climates in the middle of a changing Mediterranean climate that eventually became dry and hot. These data also suggest that in the mainland localities of Europe and Africa, sexual individuals of S. mediterranea are being replaced by asexual individuals that are either conspecific or are from other species that are better adapted to the Mediterranean climate.
Resumo:
ABSTRACT: BACKGROUND: To conserve critically endangered predators, we also need to conserve the prey species upon which they depend. Velvet geckos (Oedura lesueurii) are a primary prey for the endangered broad-headed snake (Hoplocephalus bungaroides), which is restricted to sandstone habitats in southeastern Australia. We sequenced the ND2 gene from 179 velvet geckos, to clarify the lizards' phylogeographic history and landscape genetics. We also analysed 260 records from a longterm (3-year) capture-mark-recapture program at three sites, to evaluate dispersal rates of geckos as a function of locality, sex and body size. RESULTS: The genetic analyses revealed three ancient lineages in the north, south and centre of the species' current range. Estimates of gene flow suggest low dispersal rates, constrained by the availability of contiguous rocky habitat. Mark-recapture records confirm that these lizards are highly sedentary, with most animals moving < 30 m from their original capture site even over multi-year periods. CONCLUSION: The low vagility of these lizards suggests that they will be slow to colonise vacant habitat patches; and hence, efforts to restore degraded habitats for broad-headed snakes may need to include translocation of lizards.
Resumo:
Although abundant in the number of individuals, the Atlantic salmon may be considered as a threatened species in many areas of its native distribution range. Human activities such as building of power plant dams, offshore overfishing, pollution, clearing of riverbeds for timber floating and badly designed stocking regimes have diminished the distribution of Atlantic salmon. As a result of this, many of the historical populations both in Europe and northern America have gone extinct or are severely depressed. In fact, only 1% of Atlantic salmon existing today are of natural origin, the rest being farmed salmon. All of this has lead to a vast amount of research and many restoration programmes aiming to bring Atlantic salmon back to rivers from where it has vanished. However, many of the restoration programmes conducted thus far have been unsuccessful due to inadequate scientific research or lack of its implementation, highlighting the fact that more research is needed to fully understand the biology of this complex species. The White and Barents Seas in northwest Russia are among the last regions in Europe where Atlantic salmon populations are still stable, thus forming an important source of biodiversity for the entire European region. Salmon stocks from this area are also of immense economic and social importance for the local people in the form of fishing tourism. The main aim of this thesis was to elucidate the post-glacial history and population genetic structure of north European and particularly northwest Russian Atlantic salmon, both of which are aspects of great importance for the management and conservation of the species. Throughout the whole thesis, these populations were studied by utilizing microsatellites as the main molecular tool. One of the most important discoveries of the thesis was the division of Atlantic salmon from the White and Barents Seas into four separate clusters, which has not been observed in previous studies employing nuclear markers although is supported by mtDNA studies. Populations from the western Barents Sea clustered together with the northeast Atlantic populations into a clearly distinguishable group while populations from the White Sea and eastern Barents Sea were separated into three additional groups. This has important conservation implications as this thesis clearly indicates that conservation of populations from all of the observed clusters is warranted in order to conserve as much of the genetic diversity as possible in this area. The thesis also demonstrates how differences in population life histories within a species, migratory behaviour in this case, and in their phylogeographic origin affect the genetic characteristics of populations, namely diversity and divergence levels. The anadromous populations from the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than the anadromous populations form the Baltic Sea basin. Among the non-anadromous populations the result was the opposite: the Baltic freshwater populations were more variable. This emphasises the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash and thus deserve a high conservation status. In the last chapter of this thesis immune relevant marker loci were developed and screened for signatures of natural selection along with loci linked to genes with other functions or no function at all. Also, a novel landscape genomics method, which combines environmental information with molecular data, was employed to investigate whether immune relevant markers displayed significant correlations to various environmental variables more frequently than other loci. Indications of stronger selection pressure among immune-relevant loci compared to non-immune relevant EST-linked loci was found but further studies are needed to evaluate whether it is a common phenomenon in Atlantic salmon.
Resumo:
Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.
Resumo:
In this study, we revisited the phylogeography of the three of major DENV-3 genotypes and estimated its rate of evolution, based on the analysis of the envelope (E) gene of 200 strains isolated from 31 different countries around the world over a time period of 50 years (1956-2006). Our phylogenetic analysis revealed a geographical subdivision of DENV-3 population in several country-specific clades. Migration patterns of the main DENV-3 genotypes showed that genotype I was mainly circumspect to the maritime portion of Southeast-Asia and South Pacific, genotype 11 stayed within continental areas in South-East Asia, while genotype III spread across Asia, East Africa and into the Americas. No evidence for rampant co-circulation of distinct genotypes in a single locality was found, suggesting that some factors, other than geographic proximity, may limit the continual dispersion and reintroduction of new DENV-3 variants. Estimates of the evolutionary rate revealed no significant differences among major DENV-3 genotypes. The mean evolutionary rate of DENV-3 in areas with long-term endemic transmissions (i.e., Indonesia and Thailand) was similar to that observed in the Americas, which have been experiencing a more recent dengue spread. We estimated the origin of DENV-3 virus around 1890, and the emergence of current diversity of main DENV-3 genotypes between the middle 1960s and the middle 1970s, coinciding with human population growth, urbanization, and massive human movement, and with the description of the first cases of DENV-3 hemorrhagic fever in Asia. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: the soil fungus Rhizoctonia solani anastomosis group 3 (AG-3) is an important pathogen of cultivated plants in the family Solanaceae. Isolates of R. solani AG-3 are taxonomically related based on the composition of cellular fatty acids, phylogenetic analysis of nuclear ribosomal DNA (rDNA) and beta-tubulin gene sequences, and somatic hyphal interactions. Despite the close genetic relationship among isolates of R. solani AG-3, field populations from potato and tobacco exhibit comparative differences in their disease biology, dispersal ecology, host specialization, genetic diversity and population structure. However, little information is available on how field populations of R. solani AG-3 on potato and tobacco are shaped by population genetic processes. In this study, two field populations of R. solani AG-3 from potato in North Carolina (NC) and the Northern USA; and two field populations from tobacco in NC and Southern Brazil were examined using sequence analysis of two cloned regions of nuclear DNA (pP42F and pP89).Results: Populations of R. solani AG-3 from potato were genetically diverse with a high frequency of heterozygosity, while limited or no genetic diversity was observed within the highly homozygous tobacco populations from NC and Brazil. Except for one isolate (TBR24), all NC and Brazilian isolates from tobacco shared the same alleles. No alleles were shared between potato and tobacco populations of R. solani AG-3, indicating no gene flow between them. To infer historical events that influenced current geographical patterns observed for populations of R. solani AG-3 from potato, we performed an analysis of molecular variance (AMOVA) and a nested clade analysis (NCA). Population differentiation was detected for locus pP89 (Phi(ST) = 0.257, significant at P < 0.05) but not for locus pP42F (Phi(ST) = 0.034, not significant). Results based on NCA of the pP89 locus suggest that historical restricted gene flow is a plausible explanation for the geographical association of clades. Coalescent-based simulations of genealogical relationships between populations of R. solani AG-3 from potato and tobacco were used to estimate the amount and directionality of historical migration patterns in time, and the ages of mutations of populations. Low rates of historical movement of genes were observed between the potato and tobacco populations of R. solani AG-3.Conclusion: the two sisters populations of the basidiomycete fungus R. solani AG-3 from potato and tobacco represent two genetically distinct and historically divergent lineages that have probably evolved within the range of their particular related Solanaceae hosts as sympatric species.