947 resultados para phylogenetic inertia
Resumo:
We examined the anatomy of expanding, mature, and senescing leaves of tropical plants for the presence of red pigments: anthocyanins and betacyanins. We studied 463 species in total, 370 genera, belonging to 94 families. This included 21 species from five families in the Caryophyllales, where betacyanins are the basis for red color. We also included 14 species of ferns and gymnosperms in seven families and 29 species with undersurface coloration at maturity. We analyzed 399 angiosperm species (74 families) for factors (especially developmental and evolutionary) influencing anthocyanin production during expansion and senescence. During expansion, 44.9% produced anthocyanins and only 13.5% during senescence. At both stages, relatively few patterns of tissue distributions developed, primarily in the mesophyll, and very few taxa produced anthocyanins in dermal and ground tissue simultaneously. Of the 35 species producing anthocyanins both in development and senescence, most had similar cellular distributions. Anthocyanin distributions were identical in different developing leaves of three heteroblastic taxa. Phylogeny has influenced the distribution of anthocyanins in the epidermis and mesophyll of expanding leaves and the palisade parenchyma during senescence, although these influences are not strong. Betacyanins appear to have similar distributions in leaves of taxa within the Caryophyllales and, perhaps, similar functions. The presence of anthocyanins in the mesophyll of so many species is inconsistent with the hypothesis of protection against UV damage or fungal pathogens, and the differing tissue distributions indicate that the pigments may function in different ways, as in photoprotection and freeradical scavenging.
Resumo:
In order to clarify the degree to which mandibular variation among Chinese macaques results from functional adaptation and phylogenetic inertia, 13 mandibular variables were analyzed by bivariate and multivariate techniques. The results indicate, not surprisingly, that the main differences in the mandible are associated with size. The study further implies that the variation between species is not closely associated with differences in functional adaptation even though the dietary and related differences are large compared to the situation in other macaques. The great variety in diet and related factors among Chinese macaques may not have yet resulted in a significant variation in the mandible. This may be because their radiation in Asia, though involving considerably greater differences in habitat, climate, and so on, has occurred more recently than for other macaque species in Southeast Asia. Mandibular variation between these species, therefore, is likely to be more closely tied to their immediate prior phylogenetic history. For example, the two stump-tailed macaques are closely similar and are also closely similar to the Assam species. Function in the mandible in these species is quite different. The results, therefore, seem to support the hypothesis that these three macaque species should be placed in a single species-group (sinica) as proposed by Delson [1980], Pan [1998], and Pan et al. [1998]. (C) 2002 Wiley-Liss, Inc.
Resumo:
Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best-fit line for the scaling relationship under scrutiny.
Resumo:
Many arthropods exhibit behaviours precursory to social life, including adult longevity, parental care, nest loyalty and mutual tolerance, yet there are few examples of social behaviour in this phylum. The small carpenter bees, genus Ceratina, provide important insights into the early stages of sociality. I described the biology and social behaviour of five facultatively social species which exhibit all of the preadaptations for successful group living, yet present ecological and behavioural characteristics that seemingly disfavour frequent colony formation. These species are socially polymorphic with both / solitary and social nests collected in sympatry. Social colonies consist of two adult females, one contributing both foraging and reproductive effort and the second which remains at the nest as a passive guard. Cooperative nesting provides no overt reproductive benefits over solitary nesting, although brood survival tends to be greater in social colonies. Three main theories explain cooperation among conspecifics: mutual benefit, kin selection and manipulation. Lifetime reproductive success calculations revealed that mutual benefit does not explain social behaviour in this group as social colonies have lower per capita life time reproductive success than solitary nests. Genetic pedigrees constructed from allozyme data indicate that kin selection might contribute to the maintenance of social nesting -, as social colonies consist of full sisters and thus some indirect fitness benefits are inherently bestowed on subordinate females as a result of remaining to help their dominant sister. These data suggest that the origin of sociality in ceratinines has principal costs and the great ecological success of highly eusociallineages occurred well after social origins. Ecological constraints such as resource limitation, unfavourable weather conditions and parasite pressure have long been considered some of the most important selective pressures for the evolution of sociality. I assessed the fitness consequences of these three ecological factors for reproductive success of solitary and social colonies and found that nest sites were not limiting, and the frequency of social nesting was consistent across brood rearing seasons. Local weather varied between seasons but was not correlated with reproductive success. Severe parasitism resulted in low reproductive success and total nest failure in solitary nests. Social colonies had higher reproductive success and were never extirpated by parasites. I suggest that social nesting represents a form of bet-hedging. The high frequency of solitary nests suggests that this is the optimal strategy when parasite pressure is low. However, social colonies have a selective advantage over solitary nesting females during periods of extreme parasite pressure. Finally, the small carpenter bees are recorded from all continents except Antarctica. I constructed the first molecular phylogeny of ceratinine bees based on four gene regions of selected species covering representatives from all continents and ecological regions. Maximum parsimony and Bayesian Inference tree topology and fossil dating support an African origin followed by an Old World invasion and New World radiation. All known Old World ceratinines form social colonies while New World species are largely solitary; thus geography and phylogenetic inertia are likely predictors of social evolution in this genus. This integrative approach not only describes the behaviour of several previously unknown or little-known Ceratina species, bu~ highlights the fact that this is an important, though previously unrecognized, model for studying evolutionary transitions from solitary to social behaviour.
Resumo:
Historically, ever since the pre-Darwinian naturalists interspecific competition was considered the main force responsible for structuring ecological communities. This interpretation lost strength in the late 70s and throughout the 80s giving room for other views, which consider other factors such as predation, parasitism and the phylogenetic inertia more important. Studies on changes in the trophic niche of a species are still uncommon in general and especially in amphibians. Species considered generalist might actually be a group of individual specialists, or individuals that specialize in a particular category of prey during a period of scarcity of resources, thus reducing intraspecific competition. This work studied the community structure of litter amphibians and trophic variation along the dry and rainy seasons in a population of Leptodactylus macrosternum. Sixteen-litter frog species were studied for their diet. Two central assumptions were tested: 1a) if the community is structured in the niche trophic level, and 1b) if there is a significant difference in the use of food resources by different species (i.e. if the community is structured), the observed structure is the result of ecological interactions or just the current phylogenetic inertia of species. Finally, 2) if there is variation in food resource use between seasons for L. macrosternum. The community showed a structure with respect to the use of food resources, and this structure persisted after taking into account the phylogenetic relationships among species. The diet of Leptodactylus macrosternum varied with the seasons, with a significant degree of individual specialization for the dry season. Patterns of a local community are important to understand its dynamics, and this may play a role in larger- scale processes. Therefore, the studies in community ecology are fundamental to understand and eventually restoring degraded areas
Resumo:
Background: The tectum is a structure localized in the roof of the midbrain in vertebrates, and is taken to be highly conserved in evolution. The present article assessed three hypotheses concerning the evolution of lamination and citoarchitecture of the tectum of nontetrapod animals: 1) There is a significant degree of phylogenetic inertia in both traits studied (number of cellular layers and number of cell classes in tectum); 2) Both traits are positively correlated accross evolution after correction for phylogeny; and 3) Different developmental pathways should generate different patterns of lamination and cytoarchitecture.Methodology/Principal Findings: The hypotheses were tested using analytical-computational tools for phylogenetic hypothesis testing. Both traits presented a considerably large phylogenetic signal and were positively associated. However, no difference was found between two clades classified as per the general developmental pathways of their brains.Conclusions/Significance: The evidence amassed points to more variation in the tectum than would be expected by phylogeny in three species from the taxa analysed; this variation is not better explained by differences in the main course of development, as would be predicted by the developmental clade hypothesis. Those findings shed new light on the evolution of an functionally important structure in nontetrapods, the most basal radiations of vertebrates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The evolution of arboreality in snakes is accompanied by modifications that are remarkably similar across species. Gravity is one of the most important selective agents, and arboreal snakes present adaptations to circumvent the gradient of pressure, including modifications on heart position (HP) and body slenderness (BS). However, the degree to which different life-history traits influence the cardiovascular system of snakes remains unclear. Here, we used an ecological and a phylogenetic approach to explore the relationship between habitat, HP, BS, and heart size (HS) in five species of the neotropical whipsnakes genus Chironius that occupy terrestrial, semiarboreal, and arboreal habits. Our ecological comparison indicated that the arboreal species have the most posterior-positioned heart, the most slender body, and the smallest HS, whereas the terrestrial representative of the group exhibited the most anterior heart, the less flattened body, and the largest HS. After removing the phylogenetic effect, we found no difference in HP and BS between terrestrial and arboreal species. Habitat only differed when contrasting with HS. Body slenderness and HS were correlated with HP. Our results suggest that different restrictions, such as anatomical constraints, behavior, and phylogenetic inertia, may be important for the studied species. © 2013 The Royal Swedish Academy of Sciences.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Socioecological models assume that primates adapt their social behavior to ecological conditions, and predict that food availability and distribution, predation risk and risk of infanticide by males affect patterns of social organization, social structure and mating system of primates. However, adaptability and variation of social behavior may be constrained by conservative adaptations and by phylogenetic inertia. The comparative study of closely related species can help to identify the relative contribution of ecological and of genetic determinants to primate social systems. We compared ecological features and social behavior of two species of the genus Sapajus, S. nigritus in Carlos Botelho State Park, an area of Atlantic Forest in Sao Paulo state, and S. libidinosus in Fazenda Boa Vista, a semi-arid habitat in Piaui state, Brazil. S. libidinosus perceived higher predation risk and fed on clumped, high quality, and usurpable resources (fruits) all year round, whereas S. nigritus perceived lower predation risk and relied on evenly distributed, low-quality food sources (leaves) during periods of fruit shortage. As predicted by socioecology models, S. libidinosus females were philopatric and established linear and stable dominance hierarchies, coalitions, and grooming relationships. S. nigritus females competed less often, and could transfer between groups, which might explain the lack of coalitions and grooming bonds among them. Both populations presented similar group size and composition and the same polygynous mating system. The species differed from each other in accordance with differences in the characteristics of their main food sources, as predicted by socioecological models, suggesting that phylogenetic inertia does not constrain social relationships established among female Sapajus. The similarity in mating systems indicates that this element of the social system is not affected by ecological variables and thus, is a more conservative behavioral feature of the genus Sapajus. Am. J. Primatol. 74:315331, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Despite the general belief that the interaction between extrafloral nectaries (EFNs) and ants is mutualistic, the defensive function of EFNs has been poorly documented in South American savannas. In this article, we evaluate the potential impact of EFNs (benefits and costs) on two species of plants from the dry areas of Central Brazil, Anemopaegma album and Anemopaegma scabriusculum (Bignoniaceae). In particular, we characterize the composition of substances secreted by the EFNs, test whether EFNs attract ants, and whether ants actually present a defensive role, leading to reduced herbivory and increased plant fitness. Histochemical analyses indicated that EFNs from both species of Anemopaegma secrete an exudate that is composed of sugars, and potentially lipids and proteins. Furthermore, EFNs from both species were shown to present a significant role in ant attraction. However, contrary to common expectations, ants were not found to protect plants against herbivore attack. No effect was found between ant visitation and flower or fruit production in A. album, while the presence of ants led to a significant decrease in flower production in A. scabriusculum. These results suggest that EFNs might present a similar cost and benefit in A. album, and a higher cost than benefit in A. scabriusculum. Since the ancestor of Anemopaegma occupied humid forests and already presented EFNs that were maintained in subsequent lineages that occupied savannas, we suggest that phylogenetic inertia might explain the presence of EFNs in the species of Anemopaegma in which EFNs lack a defensive function.