870 resultados para phylogenetic comparative methods
Resumo:
An increasing focus in evolutionary biology is on the interplay between mesoscale ecological and evolutionary processes such as population demographics, habitat tolerance, and especially geographic distribution, as potential drivers responsible for patterns of diversification and extinction over geologic time. However, few studies to date connect organismal processes such as survival and reproduction through mesoscale patterns to long-term macroevolutionary trends. In my dissertation, I investigate how mechanism of seed dispersal, mediated through geographic range size, influences diversification rates in the Rosales (Plantae: Anthophyta). In my first chapter, I validate the phylogenetic comparative methods that I use in my second and third chapters. Available state speciation and extinction (SSE) models assumptions about evolution known to be false through fossil data. I show, however, that as long as net diversification rates remain positive – a condition likely true for the Rosales – these violations of SSE’s assumptions do not cause significantly biased results. With SSE methods validated, my second chapter reconstructs three associations that appear to increase diversification rate for Rosalean genera: (1) herbaceous habit; (2) a three-way interaction combining animal dispersal, high within-genus species richness, and geographic range on multiple continents; (3) a four-way interaction combining woody habit with the other three characteristics of (2). I suggest that the three- and four-way interactions represent colonization ability and resulting extinction resistance in the face of late Cenozoic climate change; however, there are other possibilities as well that I hope to investigate in future research. My third chapter reconstructs the phylogeographic history of the Rosales using both non-fossil-assisted SSE methods as well as fossil-informed traditional phylogeographic analysis. Ancestral state reconstructions indicate that the Rosaceae diversified in North America while the other Rosalean families diversified elsewhere, possibly in Eurasia. SSE is able to successfully identify groups of genera that were likely to have been ancestrally widespread, but has poorer taxonomic resolution than methods that use fossil data. In conclusion, these chapters together suggest several potential causal links between organismal, mesoscale, and geologic scale processes, but further work will be needed to test the hypotheses that I raise here.
Resumo:
Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.
Resumo:
Experimental and comparative methods in the social sciences
Resumo:
El Sistema de Seguros Agrarios con el Seguro de cobertura de los daños por sequía en los pastos aprovechados por el ganado en régimen extensivo (línea de seguro 133) aplica la teledetección mediante un índice de vegetación (NDVI), con el fin de solucionar los problemas de peritación que surgen cuando se tiene que determinar la cantidad y calidad del pasto afectado por la sequía. Por ello el seguro de cobertura de los daños por sequía en pastos es el principal instrumento para hacer frente al gasto que supone la necesidad de suplemento de alimentación del ganado reproductor debido a la sequía. En las comarcas de Vitigudino, Trujillo y Valle de los Pedroches (España) se comparó la evolución del seguro de sequía en pastos desde 2006 a 2010 con un modelo matemático de crecimiento del pasto en función de las variables ecofisiológicas y ambientales. Sumadas las decenas de sequía extrema y sequía leve, el modelo matemático contabilizó un número mayor de decenas que las proporcionadas por Agroseguro. La recomendación es comparar las curvas de crecimiento del pasto con las curvas de evolución del NDVI, para ajustar ambos modelos
Resumo:
Summary Understanding the factors influencing variation in the degree of sperm competition is a key question underlying the mechanisms driving sexual conflict. Previous behavioural and comparative studies have indicated that carnivores appear to have evolved under sperm competition but an analysis of the predictors of the level of sperm competition is missing. In this study, we use phylogenetic comparative methods to investigate life-history parameters predicted to affect the degree of sperm competition in terrestrial carnivores using variation in relative testes size (RTS, after controlling for body size allometry) as a measure of the level of sperm competition. Due to a paucity of consistent data across taxa, we used three measures of RTS: testes mass (n = 40 species), testes and epididymes mass combined (n = 38), and testes volume (n = 48). We also created a derived data set (n = 79) with testes mass estimated from regression analyses on the other measures of testes size. Carnivores with shorter mating seasons had relatively larger testes, consistent with the hypothesis that sperm competition is greater when the degree of female oestrous synchrony is high. This relationship was stronger in spontaneous versus induced ovulators, suggesting higher sperm competition levels in spontaneous ovulators. This is the first comparative study to show this within mammalian taxa. Neither social mating system nor reproductive lifespan were significantly associated with variation in RTS and hence are poor predictors of sperm competition levels. None of the above relationships were found to be significant for the testes and epididymes mass combined data set, but our understanding of the role of the epididymis in sperm competition is too limited to draw any conclusions. Finally, we consistently found a significant phylogenetic signal in all analyses, indicating that phylogeny has played a significant role in the evolution of carnivore testes size and, therefore, in shaping levels of sperm competition. Our results shed new light into the factors affecting levels of sperm competition in terrestrial carnivores by showing that the degree of oestrous synchrony and ovulation type interact to predict variation in RTS.
Resumo:
Why some organisms become invasive when introduced into novel regions while others fail to even establish is a fundamental question in ecology. Barriers to success are expected to filter species at each stage along the invasion pathway. No study to date, however, has investigated how species traits associate with success from introduction to spread at a large spatial scale in any group. Using the largest data set of mammalian introductions at the global scale and recently developed phylogenetic comparative methods, we show that human-mediated introductions considerably bias which species have the opportunity to become invasive, as highly productive mammals with longer reproductive lifespans are far more likely to be introduced. Subsequently, greater reproductive output and higher introduction effort are associated with success at both the establishment and spread stages. High productivity thus supports population growth and invasion success, with barriers at each invasion stage filtering species with progressively greater fecundity.
Resumo:
Phylogenetic comparative methods are increasingly used to give new insights into the dynamics of trait evolution in deep time. For continuous traits the core of these methods is a suite of models that attempt to capture evolutionary patterns by extending the Brownian constant variance model. However, the properties of these models are often poorly understood, which can lead to the misinterpretation of results. Here we focus on one of these models – the Ornstein Uhlenbeck (OU) model. We show that the OU model is frequently incorrectly favoured over simpler models when using Likelihood ratio tests, and that many studies fitting this model use datasets that are small and prone to this problem. We also show that very small amounts of error in datasets can have profound effects on the inferences derived from OU models. Our results suggest that simulating fitted models and comparing with empirical results is critical when fitting OU and other extensions of the Brownian model. We conclude by making recommendations for best practice in fitting OU models in phylogenetic comparative analyses, and for interpreting the parameters of the OU model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Within a community, species may germinate at different times so as to mitigate competition and to take advantage of different aspects of the seasonal environment (temporal niche differentiation). We illustrated a hypothesis of the combined effects of abiotic and biotic competitive factors on germination timing and the subsequent upscale effects on community assembly. We estimated the germination timing (GT) for 476 angiosperm species of the eastern Tibetan Plateau grasslands under two light treatments in the field: high (i.e. natural) light and low light. We also measured the shift in germination timing (SGT) across treatments for all species. Furthermore, we used phylogenetic comparative methods to test if GT and SGT were associated with seed mass, an important factor in competitive interactions. We found a significant positive correlation between GT and seed mass in both light treatments. Additionally, small seeds (early germinating seeds) tended to germinate later and large seeds (late germinating seeds) tended to germinate earlier under low light vs high light conditions. Low light availability can reduce temporal niche differentiation by increasing the overlap in germination time between small and large seeds. In turn, reduced temporal niche differentiation may increase competition in the process of community assembly.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conservatism is a central theme of organismic evolution. Related species share characteristics due to their common ancestry. Some concern have been raised among evolutionary biologists, whether such conservatism is an expression of natural selection or of a constrained ability to adapt. This thesis explores adaptations and constraints within the plant reproductive phase, particularly in relation to the evolution of fleshy fruit types (berries, drupes, etc.) and the seasonal timing of flowering and fruiting. The different studies were arranged along a hierarchy of scale, with general data sets sampled among seed plants at the global scale, through more specific analyses of character evolution within the genus Rhamnus s.l. L. (Rhamnaceae), to descriptive and experimental field studies in a local population of Frangula alnus (Rhamnaceae). Apart from the field study, this thesis is mainly based on comparative methods explicitly incorporating phylogenetic relationships. The comparative study of Rhamnus s.l. species included the reconstruction of phylogenetic hypotheses based on DNA sequences. Among geographically overlapping sister clades, biotic pollination was not correlated with higher species richness when compared to wind pollinated plants. Among woody plants, clades characterized by fleshy fruit types were more species rich than their dry-fruited sister clades, suggesting that the fleshy fruit is a key innovation in woody habitats. Moreover, evolution of fleshy fruits was correlated with a change to more closed (darker) habitats. An independent contrast study within Rhamnus s.l. documented allometric relations between plant and fruit size. As a phylogenetic constraint, allometric effects must be considered weak or non-existent, though, as they did not prevail among different subclades within Rhamnus s.l. Fruit size was correlated with seed size and seed number in F. alnus. This thesis suggests that frugivore selection on fleshy fruit may be important by constraining the upper limits of fruit size, when a plant lineage is colonizing (darker) habitats where larger seed size is adaptive. Phenological correlations with fruit set, dispersal, and seed size in F. alnus, suggested that the evolution of reproductive phenology is constrained by trade-offs and partial interdependences between flowering, fruiting, dispersal, and recruitment phases. Phylogenetic constraints on the evolution of phenology were indicated by a lack of correlation between flowering time and seasonal length within Rhamnus cathartica and F. alnus, respectively. On the other hand, flowering time was correlated with seasonal length among Rhamnus s.l. species. Phenological differences between biotically and wind pollinated angiosperms also suggested adaptive change in reproductive phenology.
Resumo:
The mammalian scapula is a complex morphological structure, composed of two ossification plates that fuse into a single structure. Most studies on morphological differentiation in the scapula have considered it to be a simple, spatially integrated structure, primarily influenced by the important locomotor function presented by this element. We used recently developed geometric morphometric techniques to test and quantify functional and phylogenetic influences on scapular shape variation in fossil and extant xenarthran mammals. The order Xenarthra is well represented in the fossil record and presents a stable phylogenetic hypothesis for its genealogical history. In addition, its species present a large variety of locomotor habits. Our results show that approximately half of the shape variation in the scapula is due to phylogenetic heritage. This is contrary to the view that the scapula is influenced only by functional demands. There are large-scale shape transformations that provide biomechanical adaptation for the several habits (arboreality, terrestriality, and digging), and small scale-shape transformations (mostly related to the coracoid process) that are not influenced by function. A nonlinear relationship between morphometric and phylogenetic distances indicates the presence of a complex mixture of evolutionary processes acting on shape differentiation of the scapula. J. Morphol. 241,251-263, 1999. (C) 1999 Wiley-Liss, Inc.
Resumo:
HIV virulence, i.e. the time of progression to AIDS, varies greatly among patients. As for other rapidly evolving pathogens of humans, it is difficult to know if this variance is controlled by the genotype of the host or that of the virus because the transmission chain is usually unknown. We apply the phylogenetic comparative approach (PCA) to estimate the heritability of a trait from one infection to the next, which indicates the control of the virus genotype over this trait. The idea is to use viral RNA sequences obtained from patients infected by HIV-1 subtype B to build a phylogeny, which approximately reflects the transmission chain. Heritability is measured statistically as the propensity for patients close in the phylogeny to exhibit similar infection trait values. The approach reveals that up to half of the variance in set-point viral load, a trait associated with virulence, can be heritable. Our estimate is significant and robust to noise in the phylogeny. We also check for the consistency of our approach by showing that a trait related to drug resistance is almost entirely heritable. Finally, we show the importance of taking into account the transmission chain when estimating correlations between infection traits. The fact that HIV virulence is, at least partially, heritable from one infection to the next has clinical and epidemiological implications. The difference between earlier studies and ours comes from the quality of our dataset and from the power of the PCA, which can be applied to large datasets and accounts for within-host evolution. The PCA opens new perspectives for approaches linking clinical data and evolutionary biology because it can be extended to study other traits or other infectious diseases.