1000 resultados para photosystem development


Relevância:

60.00% 60.00%

Publicador:

Resumo:

被子植物成熟的种子一般不合有叶绿素,但是莲(Nelumbo nucifera Gaertn.)的胚芽却具有鲜明的绿色,本文较详细地研究了莲胚芽不同于一般被子植物叶组织的色素和光台系统组成,并通过对莲胚芽成熟发育过程中的叶绿素合成和光合系统发育进行分析,探讨了莲胚芽光合特性形成的原因,最后对莲胚芽在黑暗中萌发能发育并建成光合系统的现象进行了研究,主要的结果如下: 1,莲胚芽不仅含有叶绿素和光合系统,而且其色素和光台系统组成均与莲叶以及其它被子植物的叶组织不同。莲胚芽的Chla/b值约为0.8左右,远远低于正常高等植物的Chla/b值(~3):莲胚芽的色素组成中不含有β-胡萝卜素;莲胚芽的光合系统没有电子传递活性,快速荧光动力学测定结果表明莲胚芽只有较高的固定荧光F。没有可变荧光Fv;原位低温荧光光谱检测表明莲胚芽只在679nm处有一个荧光发射主峰,没有正常的PSII和PSI荧光发射峰(683nm、692nm和730nm);部分变性的叶绿素蛋白复合物凝胶电泳分析结果表明莲胚芽叶绿体类囊体膜上只存在LHCII 一种叶绿素蛋白复合物(其中单体和二聚体形式的LHCII均有发现);Western Blots检测结果表明莲胚芽的LHCII组成比较单一,同时确证了莲胚芽不含有PSI的核心和天线蛋白组分。莲胚芽LHCII和莲叶LHCII在SDS-PAGE图谱上迁移距离相同,但是光谱分析表明二者不仅在Chla、Chlb的相对含量上不同,而且在叶绿素分子与蛋白的结合状态上也存在差异,这些差异主要是由一部分Chla分子造成的,Chlb分子在二者中的结合状态则比较~致。 2,对莲胚芽成熟过程中的光合系统发育进行研究,结果表明这个过程可以分为建成期(0-20天)、稳定期(20-30天)和降解期(30—40天)三个阶段。在建成期和稳定期内,莲胚芽外面的包被物可能不是完全遮光的,所以莲胚芽能感受到环境光信号,其叶绿素合成已经光合系统建成集中在此阶段内进行:在莲’胚芽成熟后期,莲胚芽外面的包被组织开始木质化,光信号无法再穿透它们,莲胚芽的光合系统发育进入降解期,叶绿素合成停止,己建成的光合系统开始降解,到莲胚芽成熟时,除LHCIl外,光合系统其余的叶绿素蛋白复合物都被降解了,所以莲胚芽具有不同于一般祓子植物叶组织的色素和光合系统组成。对莲胚芽的成熟发育过程进行遮光处理,结果发现遮光发育的莲胚芽发生明显黄化,这表明莲胚芽的叶绿素合成也离不开光照,在莲总基因组中检测不到编码DPOR的三个基因的同源序列,确证了莲胚芽不具有在黑暗中合成叶绿素的能力。 3,在黑暗中萌发生长的莲胚芽能够在相当长的时间内保持其叶绿素稳定,特别是Chla的含量在暗生长10天以内基本没有变化;原位低温荧光光谱检测表明暗萌发过程中莲苗有PSII和PSI的荧光发射峰形成,暗生长10天左右的莲苗具有比较明显的光合系统荧光发射峰,但是与自然光照下的发育过程相比,暗萌发莲苗的光合系统荧光发射峰出现较慢,而且PSI的荧光发射相对较弱;暗萌发莲苗在转绿以及冻融过程中的原位低温荧光光谱变化表明莲苗在黑暗中建成的光合系统不完善并且不稳定;对莲胚芽、暗萌发莲苗以及莲叶的叶绿体吸收光谱进行比较,结果显示暗萌发莲苗的叶绿体发育阶段介于莲胚芽和莲叶之间;叶绿素蛋白复合物凝胶电泳分离,SDS-PAGE,Western Blots免疫检测、以及叶绿素荧光诱导动力学结果均确证暗萌发莲苗有光合系统的发育,特别是PSI的出现;对暗萌发莲苗的光化学活性进行分析,结果表明暗中建成的PSII和PSI均具有电子传递活性:但是放氧复合物的发育不完全,对莲胚芽暗萌发过程光合系统建成的原因进行分析,推测叶绿素可能起了至关重要的作用,光对于莲胚芽萌发过程中的光合系统发育来说可能并不是必需的。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A small fraction of the energy absorbed in the light reactions of photosynthesis is re-emitted as chlorophyll-a fluorescence. Chlorophyll-a fluorescence and photochemistry compete for excitation energy in photosystem II (PSII). Therefore, changes in the photochemical capacity can be detected through analysis of chlorophyll fluorescence. Chlorophyll fluorescence techniques have been widely used to follow the diurnal (fast), and the seasonal (slow) acclimation in the energy partitioning between photochemical and non-photochemical processes in PSII. Energy partitioning in PSII estimated through chlorophyll fluorescence can be used as a proxy of the plant physiological status, and measured at different spatial and temporal scales. However, a number of technical and theoretical limitations still limit the use of chlorophyll fluorescence data for the study of the acclimation of PSII. The aim of this Thesis was to study the diurnal and seasonal acclimation of PSII in field conditions through the development and testing of new chlorophyll fluorescence-based tools, overcoming these limitations. A new model capable of following the fast acclimation of PSII to rapid fluctuations in light intensity was developed. The model was used to study the rapid acclimation in the electron transport rate under fluctuating light. Additionally, new chlorophyll fluorescence parameters were developed for estimating the seasonal acclimation in the sustained rate constant of thermal energy dissipation and photochemistry. The parameters were used to quantitatively evaluate the effect of light and temperature on the seasonal acclimation of PSII. The results indicated that light environment not only affected the degree but also the kinetics of response of the acclimation to temperature, which was attributed to differences in the structural organization of PSII during seasonal acclimation. Furthermore, zeaxanthin-facilitated thermal dissipation appeared to be the main mechanisms modulating the fraction of absorbed energy being dissipated thermally during winter in field Scots pine. Finally, the integration between diurnal and seasonal acclimation mechanisms was studied using a recently developed instrument MONI-PAM (Walz GmbH, Germany) capable of continuously monitoring the energy partitioning in PSII.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Photosystem II (PSII) of oxygenic photosynthesis has the unique ability to photochemically oxidize water, extracting electrons from water to result in the evolution of oxygen gas while depositing these electrons to the rest of the photosynthetic machinery which in turn reduces CO2 to carbohydrate molecules acting as fuel for the cell. Unfortunately, native PSII is unstable and not suitable to be used in industrial applications. Consequently, there is a need to reverse-engineer the water oxidation photochemical reactions of PSII using solution-stable proteins. But what does it take to reverse-engineer PSII’s reactions? PSII has the pigment with the highest oxidation potential in nature known as P680. The high oxidation of P680 is in fact the driving force for water oxidation. P680 is made up of a chlorophyll a dimer embedded inside the relatively hydrophobic transmembrane environment of PSII. In this thesis, the electrostatic factors contributing to the high oxidation potential of P680 are described. PSII oxidizes water in a specialized metal cluster known as the Oxygen Evolving Complex (OEC). The pathways that water can take to enter the relatively hydrophobic region of PSII are described as well. A previous attempt to reverse engineer PSII’s reactions using the protein scaffold of E. coli’s Bacterioferritin (BFR) existed. The oxidation potential of the pigment used for the BFR ‘reaction centre’ was measured and the protein effects calculated in a similar fashion to how P680 potentials were calculated in PSII. The BFR-RC’s pigment oxidation potential was found to be 0.57 V, too low to oxidize water or tyrosine like PSII. We suggest that the observed tyrosine oxidation in BRF-RC could be driven by the ZnCe6 di-cation. In order to increase the efficiency of iii tyrosine oxidation, and ultimately oxidize water, the first potential of ZnCe6 would have to attain a value in excess of 0.8 V. The results were used to develop a second generation of BFR-RC using a high oxidation pigment. The hypervalent phosphorous porphyrin forms a radical pair that can be observed using Transient Electron Paramagnetic Resonance (TR-EPR). Finally, the results from this thesis are discussed in light of the development of solar fuel producing systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification represents a key threat to the recruitment of scleractinian corals. Here, we investigated the effect of increased partial pressure of carbon dioxide (pCO2) on the early development of Pocillopora damicornis by rearing the recruits for 12 days at 3 pCO2 levels (446, 896 and 1681 µatm). Results showed that increased pCO2 exerted minor effects on symbiont density and maximum quantum yield (Fv/Fm), while significantly enhanced the relative electron transport through photosystem II (PSII) of Symbiodinium. Notably, calcification and biomass of recruits decreased sharply by 34% and 24% respectively in 896 µatm, and tended to remain constant as pCO2 was raised from 896 to 1681 µatm. Furthermore, recruits in 1681 ?atm, with comparable surface area as those in 896 µatm, produced fewer buds. These findings indicated that juvenile P. damicornis under high pCO2 would enhance electron transport rate and suppress asexual budding to favor skeletal and tissue growths, which are more critical for their persistence and survival in a high pCO2 environment. This work suggested the physiological plasticity of juvenile corals under short-term exposure to elevated pCO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that in the red alga Rhodella violacea, exposure to continuous low intensities of light 2 (green light) or near-saturating intensities of white light induces a ΔpH-dependent PSII fluorescence quenching. In this article we further characterize this fluorescence quenching by using white, saturating, multiturnover pulses. Even though the pulses are necessary to induce the ΔpH and the quenching, the development of the latter occurred in darkness and required several tens of seconds. In darkness or in the light in the presence of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, the dissipation of the quenching was very slow (more than 15 min) due to a low consumption of the ΔpH, which corresponds to an inactive ATP synthase. In contrast, under far-red illumination or in the presence of 3-(3,4-dichlorophenyl)-1,1′-dimethylurea (only in light), the fluorescence quenching relaxed in a few seconds. The presence of N,N′-dicyclohexyl carbodiimide hindered this relaxation. We propose that the quenching relaxation is related to the consumption of ΔpH by ATP synthase, which remains active under conditions favoring pseudolinear and cyclic electron transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intact etioplasts of bean (Phaseolus vulgaris) plants exhibit proteolytic activity against the exogenously added apoprotein of the light-harvesting pigment-protein complex serving photosystem II (LHCII) that increases as etiolation is prolonged. The activity increases in the membrane fraction but not in the stroma, where it remains low and constant and is mainly directed against LHCII and protochlorophyllide oxidoreductase. The thylakoid proteolytic activity, which is low in etioplasts of 6-d-old etiolated plants, increases in plants pretreated with a pulse of light or exposed to intermittent-light (ImL) cycles, but decreases during prolonged exposure to continuous light, coincident with chlorophyll (Chl) accumulation. To distinguish between the control of Chl and/or development on proteolytic activity, we used plants exposed to ImL cycles of varying dark-phase durations. In ImL plants exposed to an equal number of ImL cycles with short or long dark intervals (i.e. equal Chl accumulation but different developmental stage) proteolytic activity increased with the duration of the dark phase. In plants exposed to ImL for equal durations to such light-dark cycles (i.e. different Chl accumulation but same developmental stage) the proteolytic activity was similar. These results suggest that the protease, which is free to act under limited Chl accumulation, is dependent on the developmental stage of the chloroplast, and give a clue as to why plants in ImL with short dark intervals contain LHCII, whereas those with long dark intervals possess only photosystem-unit cores and lack LHCII.