986 resultados para photoperiod-sensitive genie male-sterile mutant
Resumo:
光敏核不育水稻农垦58S是石明松于1973年在晚粳农垦58的大田中发现的雄性不育突变体,它在长日照下雄性不育可被用于与恢复系杂交生产杂种,而在短日照下雄性可育能用于自交繁殖,它的恢复系来源广泛。基于这些特性,育种学家用光敏核不育水稻建立的二系杂交水稻制种技术有很大的应用潜力。近十几年来,育种学家用农垦58S作基因供体转育了许多新的不育系,研究结果表明育成的粳型不育系均为光敏不育系,但在育成的籼型不育系中,绝大多数丧失光敏核不育特性,变成温敏不育系。目前因不知光敏核不育的分子遗传机制,尚不能解释这些问题。 本文用双向电泳技术分析了农垦58S和农垦58苗期和育性转换光敏感期叶绿体蛋白质的差异,在农垦58S中发现三个蛋白质(Pl,P2和P3),其中Pl和P2在苗期和光敏感期叶片内均存在,P3仅在光敏感期的叶片中存在,它们不受长日照或短日照处理的影响。农垦58没有这三个蛋白质。 用制备型双向电泳纯化后,得到SDS - PAGE和IEF纯的Pl和P2。经SDS-PAGE和IEF测定,Pl的等电点是6.2,分子量是41 kDa;P2的等电点是5.8,分子量是61 kDa。现称Pl为P41,P2为P61。氨基酸序列分析和同源性检索发现P41与水稻叶绿体ATP合成酶p亚基和酵母转录因子CAD1有同源性,此外,P41的N-端序列中有一个与蛋白激酶催化核心中的多功能motif Y-G-X-G-X- (P/T)-G-V相似的序列;P61的14个氨基酸长的N-端序列与水稻叶绿体ATP合成酶β亚基的一致。P41和P61 N-端前12个氨基酸的序列也完全一致。 PCR扩增和Southern杂交分析没有发现农垦58S和农垦58之间ATP合成酶β亚基基因(atpB)的多态性。Nothern杂交分析表明农垦58S中仅有一种、与农垦58 atpB mRNA分子量相同的atpB转录产物,但它的atpB mRNA丰度明显低于农垦58的。没有检测到突变的atpB和其它形式的atpB转录产物。 分析P41和P61在其它水稻材料中的分布特点发现它们在粳型光敏不育系7001S、5088S、31301S、C407S和1647S,籼型光敏不育系W7415S和W9451S以及温(光)敏不育系培矮64S中存在,而在对照材料三系水稻马协A、珍汕97A、马协B、珍汕97B和明恢63以及常规粳稻C94153中不存在。根据这些不育系的系谱和它们与农垦58S之间基因的等位性研究结果,讨论了P41和P61与光敏核不育性的可能联系。
Resumo:
Jasmonic acid (JA) and its precursor 12-oxophytodienoic acid (OPDA) act as plant growth regulators and mediate responses to environmental cues. To investigate the role of these oxylipins in anther and pollen development, we characterized a T-DNA-tagged, male-sterile mutant of Arabidopsis, opr3. The opr3 mutant plants are sterile but can be rendered fertile by exogenous JA but not by OPDA. Cloning of the mutant locus indicates that it encodes an isozyme of 12-oxophytodienoate reductase, designated OPR3. All of the defects in opr3 are alleviated by transformation of the mutant with an OPR3 cDNA. Our results indicate that JA and not OPDA is the signaling molecule that induces and coordinates the elongation of the anther filament, the opening of the stomium at anthesis, and the production of viable pollen. Just as importantly, our data demonstrate that OPR3 is the only isoform of OPR capable of reducing the correct stereoisomer of OPDA to produce JA required for male gametophyte development.
Resumo:
光敏核不育水稻晚粳农垦58S具有长日下不育,短日照下可育的特点。为了确定突变体NK58S突变基因的作用器官及功能。我们设计了一系列光周期处理实验,并对不同光周期处理的生长点或幼穗进行细胞学及细胞化学观察,同时选择光调节基因对其在NK58S上表达特性进行分析。材料选用突变体NK58S,及其野生型NK58S,和它的回复突变体NK58Sr,加两个籼稻品种W6154S及珍汕97,共设计十三个不同的光周期处理。根据试验分析我们发现: 第一,温度对结实率的影响,NK58S,NK58及NK58Sr表现一致,没有发现对NK58S有特异作用的温度效应。三个粳稻品种均因幼穗分化前的长日处理延迟抽穗,而使各处理粳稻品种处于不同环境条件下,引起结实率的变化。 第二,温度对花粉育性的影响较对结实率的影响小。因而用花粉育性进行不育材料的鉴定和比较较可靠。 第三,光周期处理引起生长点原套及原体组织的一定的细胞学变化,但三个粳稻品种间没有差异。生长点周围及其下节部的淀粉积累的变化,三个粳稻品种一致,没有发现不育与可育材料之间的差异。一直处于长日处理条件下的三个粳稻材料,表现出NK58S突变体生长点周围及节部淀粉积累少于NK58,和NK58Sr。 第四,就总RNA而言,三个粳稻品种在光周期处理下各样品绝对量不同,但不同光周期处理,三个粳稻品种反应一致。不同发育时期叶片内光调节基因表达丰度与总RNA水平不一致,不同基因表现出因不同发育阶段而不同的转录特点。在所选三个光调节基因的Northern印迹分析结果没有发现三个晚粳稻品种之间的差异。 第五,幼穗分化开始后的光周期反应不是农垦58S的花粉育性所特有,对NK58,及NK58Sr也有作用。光周期处理还会影响幼穗其它方面的发育。短日处理下农垦58S的育性恢复也只有农垦58的一半。 总之,我们的试验结果使我们得出光周期作用产生的信息在植物不同发育阶段一致。不同发育时期的生长点对来自该信息的作用产生不同的反应。光敏核不育的突变表型体现在生长点的变化上。突变基因的功能是感受来自不同环境因素所产生的胁迫作用。
Resumo:
光敏核不育水稻晚粳农垦58S具有长日照下不育、短日照下可育的特点,是目前二系法杂交水稻应用的基础。对于其长日光周期引起雄性败育的特性已得到很多实验的支持,但这种光周期反应特性是光敏不育材料所特有,还是在水稻穗发育中普遍存在,目前尚不清楚。对这一问题的认识涉及到对光敏不育性本质的了解及对这一性状的有效利用,本文对此进行了系统的研究分析。 本研究以24种水稻品种包括光敏核不育系及常规水稻品种为材料,在控制光周期下进行。即利用16h长日照处理(LD)和l0h短日照处理(SD)及其不同组合,以抽穗期、叶龄、抽穗叶片总数、花粉育性、结实率、穗长、穗粒密度为指标,结合光敏不育系幼穗发育的形态解剖学特征,探讨了在整个水稻发育中包括叶片生长、幼穗分化以及穗发育等过程中,不同材料的光周期反应特征,尤其是二次枝梗期后的穗发育过程中的光周期反应特征。此外还分析了温度与光周期反应的关系及温度在光敏不育现象中的作用,并研究了代谢抑制剂对光敏不育特征的影响。 研究表明,光周期对水稻的出叶速度基本没有影响,但对水稻的抽穗叶龄有影响,长日照使抽穗叶龄增加而延迟其穗分化及抽穗。光周期还对幼穗分化后的穗发育过程有抑制延迟,作用,影响大小因品种而异,以对早稻、籼稻的影响最弱,对晚稻、粳稻的影响最强,与其穗分化中的感光性有明显的相关性。 除对抽穗期有影响外,穗发育阶段的长日光周期还影响着穗发育的其它性状,如使穗长增加,芒较长、稳粒密度降低,花粉育性降低,结实率下降。此外植株发育的其它性状也可受到影响,如剑叶发育不良表现为叶片缺少仅有叶鞘、倒二叶生长旺盛、植株较高等。同时几组不同组合的光周期处理结果均表明,长日光周期对水稻穗发育的影响主要发生在穗发育的前5-10天即颖花原基分化期、雌雄蕊原基分化期至花粉母细胞形成期。这些结果表明水稻的光周期反应不仅表现在茎端从营养生长向生殖生长的转换上(幼穗分化),而且还表现在幼穗分化完成后的穗发育过程中。长日光周期对晚稻穗发育均有抑制效应,且日长对稳发育的影响时期与光敏核不育水稻的‘育性转换敏感期’完全一致。因此在农垦58S中引起‘光敏不育’的原因很可能不是一种特殊的光周期反应,而是该材料雄性器官发生过程不能对长日光周期做出适当的反应。 对24种不同品种水稻的光周期反应表明,不同材料光周期反应特性不同。光敏不育系农垦58S与农垦58在对长日照的反应上也有较大不同,表现为前者在短日照下穗分化较快,在自然日照下抽穗较早。这表明除了育性不同外,农垦58S与农垦58在光周期反应特征上也有所不同,然而我们认为这种不同不是农垦58S表现光敏不育的主要原因。因为本研究中还发现,光敏不育系农垦58S与其可育回复突变体农垦58S(r)在抽穗期等光周期反应特征上相当一致,但在育性反应上却有较大不同,长日照下农垦58S(r)表现为雄性可育,而农垦58S表现为雄性败育。根据上述几方面的比较,我们认为光敏不育的机制很可能在于农垦58S突变体其雄性器官发育对环境不利信号的反应能力的变弱所致。 在本研究中发现,温度对水稻穗发育的影响表现在两个方面:一方面是通过影响光周期反应强弱而起作用,如高温可加强短日照下的穗分化和发育过程,高温亦可加强长日照对穗分化发育的抑制作用;另一方面是直接对器官发生过程产生影响,如在对短日照下光敏不育系和常规稻不同温度条件下处理时的结实率比较分析发现,常规稻的结实率与其抽穗扬花期的平均温度显著负相关,而光敏核不育水稻的结实率虽与抽穗扬花期的温度有一定相关性,但更与穗发育期的平均温度呈显著负相关,二者在受温度影响的作用时期上有显著差异,因此温度也可直接对雄性器官发育起作用。区分温度对光敏不育的两方面影响,同时考虑到光敏不育机制更有可能在于光敏不育系农垦58S雄性器官发育对环境信号反应能力的变弱的假设。我们就可以较好地理解农垦58S‘光敏不育’性状经杂交转育到对光周期弱感的籼稻中所出现的‘温敏不育性’。 核酸代谢抑制剂5-FU,2-TU对SD下的幼穗分化有较强抑制作用,使幼穗分化被迟滞,而2-BrDU和蛋白质合成抑制剂CHX、CL对其影响较小。抑制剂处理也不能诱导LD下的穗分化。 短日照下,5-FU可对穗发育有强烈抑制作用,可使常规品种农垦58及光敏不育系农垦58S穗畸形,颖花减少并发育不良,穗长缩短,枝梗减少,花粉败育甚至无花粉,结实率显著降低,其有效作用时期为穗发育的二次枝梗分化期至雌雄蕊原基分化期,与长日照诱导农垦58S败育的作用时期也完全吻合,5-FU对SD下穗发育的影响还可被核酸抑制剂的恢复剂乳清酸所部分恢复。其它代谢抑制剂如2-TU、CHX、CL等也可使农垦58S育性明显降饭,而所有这些抑制剂对常规可育的农垦58及农垦58S(r)的育性影响较小,表明它们与光敏不育系对抑制信号的反应能力有显著不同。 长日照下5-FU对LD下的农垦58S的幼穗发育也有很强的抑制作用,使稳长缩短,颖数减少,但它还可使部分LD下处理植株抽穗期较LD对照明显提前,并可使农垦58S育性部分恢复而有结实,说明5-FU还可对LD的抑制作用有抑制,通过对LD抑制作用的抑制使LD下的育性转换有部分恢复。其它代谢抑制剂在穗发育前期处理LD下农垦58S叶片均可看到植株在抽穗期较LD下提前5—8天的同时,其花粉育性有不同程度的提高,在高温长日下甚至有一定程度的结实率,表明各种抑制剂均可对穗发育中的光周期作用产生影响。 总之,本研究结果表明,短日植物水稻的光周期反应不仅存在于幼穗分化上,还存在于幼穗发育和花器官发生等发育过程中。幼穗发育的光周期效应表现为抽穗期、穗长、穗粒密度、结实率等多方面的变化,作用时期以穗发育早期的花器官发生阶段影响最大。作用强弱因品种不同而异,以粳稻和晚稻中作用较强。光敏不育突变的更主要变化可能在于农垦58S的雄性器官分化发育时对环境不利信号的反应能力变弱,导致其正常发育受阻,育性不能正常表达。温度在水稻穗发育上既可通过影响光周期反应而起作用,还可直接对穗器官发育产生影响而对育性表达起作用。此外我们还发现农垦58S与农垦58不仅在雄性育性上有显著不同,而且其光周期反应特性也有较大的差异。抑制剂处理结果也支持光敏不育系农垦58S的雄性器官发生过程较农垦58更易受抑制剂影响而育性降低,而抑制剂对长日光周期抑制作用的部分解除,可以使其育性有一定程度的恢复,也表明光周期对雄性育性的影响最为显著。这些结果可以帮助我们更加全面地认识光敏不育水稻的基本特性,从而为进一步开展光敏不育的转育及应用研究提供可靠的科学依据。
Resumo:
光敏核不育水稻农垦58S由晚粳农垦58突变形成。具有在适宜温度条件下,长日照诱导雄性不育、短日照诱导雄性可育的基本特性。光敏核不育水稻育性转换机理的阐明是两系法杂交稻技术的关键。 1.克隆光敏不育基因是研究光敏核不育水稻育性转换机理的一个重要方面,本文对通过反映农垦58S和农垦58遗传背景差异的蛋白质或受光周期调节的蛋白质实现克隆光敏不育基因的策略进行了可行性研究,得到以下结果: (1).利用双向电泳技术在光敏核不育水稻是58S叶片中发现一个不存在于农垦58的蛋白质,其分子量为59.8kDa,等电点pH为5.9(称为Pa),该蛋白的存在不受光照条件、发育时期的影响,反映出农垦58S与农垦58遗传背景的差异。 (2).Pa蛋白与农垦58S叶绿体P61蛋白具有相同的分子量、等电点和N-端氨基酸顺序,在不同品种水稻中具有相同的分布,因此它们很可能是同一个蛋白质分子。 (3).利用双向电泳技术发现P61(Pa)和P41蛋白不仅存在于光敏不育系中,也存在于常规可育粳稻中,与光敏不育性状没有平行关系。 (4).利用双向电脉技术发现10天14小时长日照能在农垦58S和农垦58中诱导一个分子量为36kDa、等电点pH为5.2的蛋白质(称为P_b),该蛋白的表达受光敏色素的调控。因此P61(Pa)、P41及P_b蛋白均与光敏不育性状无直接关系,推测克隆这些蛋白的基因无法直接获得光敏不育基因。 2.在育性转换光周期敏感期已经发现长日照使农垦58S叶绿体发育不良,但在苗期光周期敏感期内,目前尚不知长日照是否会有同样的效应。本文以光周期对农垦58S苗期叶绿体发育的影响为主要内容,研究了农垦58S苗期的光周期反应,得到以下结果: (1).农垦58S从5叶龄期至6叶龄期开始对光周期敏感,短日照开始能诱导茎尖分化幼穗。 (2).不同的光周期对农垦58S 4叶龄期新展叶片叶绿体发育的影响无明显差异,叶结体结构与功能均表现正常。 (3).不同的光周期对农垦58S 6叶龄期新展叶片叶绿体发育的影响有明显差异。与短日照相比,长日照引起农垦58S部分叶绿体发育不良,导致光化学活性减弱、超分子结构异常。长日光周期对农垦58S叶绿体发育的不良效应可能是光周期敏感期内存在的一种特殊现象。
Resumo:
本文报道了在育性转换敏感期光周期处理对光敏核不育水稻(农垦58S)及农垦58最新全展叶中光敏色素Ⅰ(PhyA)水平的影响PartI).在10个光周期处理的最后一个暗期结束前,收获每株水稻的最上部二叶。PhyA用酶联免疫吸附测定法(ELISA)测定。 结果表明:0.5%(v/v)聚乙烯亚胺(PEI)可除去水稻叶片粗提液中干扰ELISA的物质;所用的ELISA专一性地检测水稻PhyA。和长日照(LD)处理相比,短日照(SU)处理导致农垦58S中PhyA的相对含量增加38.5%;而农垦58只增加18.5%。显然,在较长的暗期条件下(SD),农垦58S中PhyA的合成比农垦58快。SD处理下大量增加的PhyA可能和农垦58S的育性恢复有关。 上述结果也说明:在同一品种甚至不同品种的植株间,PhyA水平均易受光周期影响而剧烈变化。 为了进一步验证农垦58S中PhyA较快积累的推论,比较了农垦58s和农垦58幼苗(三叶期)在一延长暗期(24h)中PhyA的积累时程。和育性转换敏感期的植株相似,农垦58S幼苗中PhyA积累速度快于农垦58。在暗期开始6h后,这种差异更明显。这一结果证实了过去的假设:甲基化水平低的农垦58PhyA基因可能比农垦58PhyA基因更活跃地表达。 PhyA和PhyB同时存在于水稻叶片中。为了探讨PhyB是否参与农垦58S雄性不育的调节,在育性转换敏感期每日光期结束、暗期开始开始前进行短暂的FR照射实验(即end-of- dayFR irradiations)。EOD FR反应应由PhyB介导。和SD下的对照相比,经过10次EODFR处理(EOD FR+SD)的农垦58S植株抽穗和开花期都相应地推迟2天,而花粉败育率和种子结实率都没有变化。 EODFR处理抑制了农垦58的开花,但花粉育性几乎不受影响。 综上所述,可能是PhyA而不是PhyB参与调节农垦58S的雄性不育。 另外,本文采用免疫印迹(Immunoblotting or Western blotting)比较了农垦58S和农垦58黄化苗(3天龄)中PhyA的相对含量(PartⅡ)。 结果表明,RPA可以专一性地检测两品种中120KD多肽。该肽在照射R或FR后对内源蛋白酶水解的敏感性不同,照射FR后,该肽易降解产生116KD的片段;照射R后,相对较稳定。因此,上述120KD多肽是水稻PhyA。未观察到农垦58S和农垦58的PhyA在免疫原性、分子量及内源蛋白酶解水解带型有差异。定量分析表明农垦58s黄化苗中PhyA的相对含量比农垦58多40%。这一结果和上述光周期处理的结果是相辅相成的。由于干种子、以及吸涨36h以前的水稻胚中均检测不PhyA的存在,因此两品种间PhyA含量的差异是PhyA蛋白重新合成的结果。 活体低温(80K)荧光光谱分析表明:农垦58黄化苗(3天龄)具有典型光敏色素(主要为PhyA)的荧光发射,其最大波长为683.8nm,而农垦58S以及由其转育来的培矮64s都缺少明显的光敏色素峰。显然,农垦58S和农垦58的PhyA荧光光谱特性有所不同。这一差异是否和雄性不育有关仍待深入研究。 本文第三部分比较了农垦58S和农垦58黄化苗(6天龄)最初转到白光下(4h)合成叶绿素的情况。无论是短暂红光(R)处理或对照,农垦58幼苗合成叶绿素的量(在白光下4h)都多于农垦58S。由于R促进叶绿素合成的效果可被随后的远红光照射(FR)逆转,因此水稻幼苗中叶绿素合成是在光敏色素的控制下。FR逆转性在农垦58S中似乎更完全。连续FR(12h最有效)促进叶绿素合成的效果在农垦58S中更明显,但叶绿素合成的量(在白光下4h)仍是农垦58多。然而,对于自然光周期下生长的幼苗(2-4叶期),农垦58S的叶绿素含量明显高于农垦58。文中讨论了这种差异的可能原因。
Resumo:
Gibel carp ( Carassius auratus gibelio) is a uniquely gynogenetic species with a minor ratio of males in natural habitats, but its male origin and sex determination mechanisms have been unknown. In this study, a male-biased mutant family was discovered from the gynogenetic gibel carp, and a male-specific SCAR marker was identified from the mutant family. Normal spermatogenesis was observed in the male testes by immuno. fluorescence histochemistry. Nearly identical AFLP profiles were observed between males and females, but a male-specific 86 bp AFLP fragment was screened by sex-pool bulked segregant analysis and individual screening. Based on the male-specific AFLP fragment, a total of 579 bp sequences were cloned by genome walking. Subsequently, a male-specific SCAR marker was designed, and the male-specific DNA fragment was confirmed to be steadily transmitted to the next generation and consistently detected only in males. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools. © FUNPEC-RP.