304 resultados para photoinduced


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the photoinduced conjugation of polymers synthesized via reversible addition−fragmentation chain transfer (RAFT) polymerization with a number of low molecular weight (functional) olefins. Upon irradiation of a solution of an aliphatic alkene and the benzyl dithioacetic acid ester (CPDA) or dodecyl trithiocarbonate (DoPAT) functional poly(alkyl acrylate) at the absorption wavelength of the thiocarbonyl group (315 nm), incorporation of the alkene at the polymer chain-end occurred. The most efficient systems identified with regard to the rate of reaction and yield were poly(butyl acrylate)/CPDA/ethyl vinyl ether (78% monoinsertion product after 1 h) and poly(butyl acrylate)/CPDA/1-pentene (73% insertion product after 7 h) at ambient temperature. An in-depth analysis of the reaction mechanism by 1H NMR and online size-exclusion chromatography-electrospray ionization tandem mass spectrometry (SEC/ESI−MSn) revealed that a possible [2 + 2] photoaddition mechanism of conjugation does not take place. Instead, fast β-cleavage of the photoexcited RAFT-end group with subsequent radical addition of an alkene was observed for all employed systems. The presented reaction thus provides a means of spatial and temporal control for the conjugation of alkenes to thiocarbonyl thio-capped macromolecules via the use of UV radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrocene-conjugated ternary copper(II) complexes [Cu(L)(B)](ClO4)(2), where L is FcCH(2)N(CH2Py)(2) (Fc = (eta(5)-C5H4)Fe-II(eta(5)-C5H5)) and B is a phenanthroline base, viz., 2,2'-bipyridine (bpy, 1), 1, 10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4), have been synthesized and characterized by various spectroscopic and analytical techniques. The bpy complex 1, as its hexafluorophosphate salt, has been structurally characterized by X-ray crystallography. The molecular structure shows the copper(II) center having an essentially square-pyramidal coordination geometry in which L with a pendant ferrocenyl (Fc) moiety and bpy show respective tridentate and bidentate modes of binding to the metal center. The complexes are redox active, showing a reversible cyclic voltammetric response of the Fc(+)-Fc couple near 0.5 V vs SCE and a quasi-reversible Cu(II)-Cu(I) couple near 0.0 V. Complexes 2-4 show binding affinity to calf thymus (CT) DNA, giving binding constant (K-b) values in the range of 4.2 x 10(4) to 2.5 x 10(5) M-1. Thermal denaturation and viscometric titration data suggest groove binding and/or a partial intercalative mode of binding of the complexes to CT DNA. The complexes show good binding propensity to the bovine serum albumin (BSA) protein, giving K-BSA values of similar to 10(4) M-1 for the bpy and phen complexes and similar to 10(5) M-1 for the dpq and dppz complexes. Complexes 2-4 exhibit efficient chemical nuclease activity in the presence of 3-mercapto-propionic acid (MPA) as a reducing agent or hydrogen peroxide (H2O2) as an oxidizing agent. Mechanistic studies reveal formation of hydroxyl radicals as the reactive species. The dpq and dppz complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to visible light of different wavelengths including red light using an argon-krypton mixed gas ion laser. Mechanistic investigations using various inhibitors reveal the fort-nation of hydroxyl radicals in the DNA photocleavage reactions. The dppz complex 4, which shows efficient photoioduced BSA cleavage activity, is a potent multifunctional model nuclease and protease in the chemistry of photodynamic therapy (PDT) of cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrocene-appended ternary copper(H) complexes of phenanthroline bases having CuN3OS coordination with an axial Cu-S bond derived from L-methionine reduced Schiff base shows red light induced oxidative DNA cleavage activity following a hydroxyl radical pathway. The dipyridophenazine complex, in addition, displays photoinduced oxidative cleavage of bovine serum albumin protein in UV-A light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved resonance Raman spectroscopy (TR3) has been used to study the effect of solvent polarity on the mechanism and nature of intermediates formed in photoinduced electron-transfer reaction between triplet flouranil ((FL)-F-3) and tetramethylbenzene (TMB). Comparison of the TR3 spectra in polar, nonpolar, and medium polar media suggests that formation of radical anion due to electron-transfer reaction between (FL)-F-3 and TMB is favored in more polar solvents, whereas ketyl radical formation is more favored in less polar media. Compared to ketyl radical, the extent of radical anion formation is negligible in nonpolar solvents. Therefore, it is inferred that in nonpolar media ketyl radical is mainly generated by hydrogen-transfer reaction in the encounter complex between (FL)-F-3 and TMB. In solvents of medium polarity, the ion-pair decay leads to the formation of both ketyl radical and ketyl radical formed from the encounter between triplet state and the donor. Thus, competition between the formation of ketyl radical and ion pair is influenced by the solvent polarity. The nature of the ion pair in different solvent polarity has been investigated from the changes observed in the vibrational frequency of (fluoranil) FL part of the complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anomalous photoinduced transformations in amorphous Ge-based chalcogenide thin films are established as being due to photochemical modification of the surfaces, by photoemission studies. Mass measurements indicate that the giant thickness reduction on irradiation is predominantly due to the loss of material as a result of photogenerated volatile high vapor pressure oxide fractions on the surface. This extrinsic contribution contradicts the models of the phenomenon proposed so far, which are based purely on intrinsic structural transformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface activity of solution deposited (SD) amorphous films of As2S3 has been investigated. Silver and copper are readily deposited on such films from appropriate aqueous ionic solutions. The metals diffuse into the films upon irradiation with energetic photons. Structure and properties of SD films have been investigated using electron microscopy, optical spectroscopy and differential scanning calorimetry. The amorphous films tend to crystallize upon metal diffusion. The stability of amorphous films, the deposition of metals on their active surfaces and the photo-induced diffusion may all be attributed to the presence or production of charged defects in amorphous chalcogenide films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary 3d-metal complexes of formulation [M(Tp(Ph))(py-nap)](ClO4)(1-3), where M is Co(II) (1), Cu(II) (2), and Zn(II) (3); Tp(Ph) is anionic tris (3-phenylpyrazolyl)borate; and py-nap is a pyridyl ligand with a conjugated 1,8-naphthalimide moiety, have been prepared from the reaction of metal perchlorate with KTp(Ph) and py-nap in CH2Cl2. The complexes have been characterized from analytical and physicochemical data. The complexes are stable in solution as evidenced from the electrospray ionization mass spectrometry data. The complexes show good binding propensity with calf thymus (CT) DNA, giving binding constant (K-b) values of similar to 10(5) M-1 and a molecular ``light-switch'' effect that results in an enhancement of the emission intensity of the naphthalimide chromophore on binding to CT DNA. The complexes do not show any hydrolytic cleavage of DNA. They show poor chemical nuclease activity in the presence of 3-mercaptopropionic acid or hydrogen peroxide (H2O2). The Co(II) and Cu(II) complexes exhibit oxidative pUC19 DNA cleavage activity in UV-A light of 365 rim. The Zn(II) complex shows moderate DNA photocleavage activity at 365 nm. The Cu(II)complex 2 displays photoinduced DNA cleavage activity in red light of 647.1 nm and 676 rim and near-IR light of >750 rim. A mechanistic studyin UV-A and visible light suggests the involvement of the hydroxyl radical as the reactive species in the DNA photocleavage reactions. The complexes also show good bovine serum albumin (BSA) protein binding propensity, giving K-BSA values of similar to 10(5) M-1. Complexes 1 and 2 display significant photoinduced BSA cleavage activity in UV-A light. The Co(II) complex 1 shows a significant photocytotoxic effect in HeLa cervical cancer cells on exposure to UV-A light of 365 nm, giving an IC50 value of 32 mu M. The IC50 value for the py-nap ligand alone is 41.42 mu m in UV-A light. The IC50 value is >200 mu M in the dark, indicating poor dark toxicity of 1. The Cu(II) complex 2 exhibits moderate photocytotoxicity and significant dark toxicity, giving IC50 values of 18.6 mu m and 29.7 mu m in UV-A light and in the dark, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoinduced electron transfer (ET) reactions in the zinc porphyrin-crown ether (ZnPCE) supramolecule, in which one crown ether moiety containing Eu3+ as electron acceptor is covalently linked to zinc porphyrin (ZnP), were studied by flash photolysis. In methanol solutions, highly efficient charge separation occurs via intramolecular ET from (ZnP)-Zn-3 to Eu3+ encapsulated in the crown ether void (k(1) = (3 +/- 1) X 10(3) s(-1)) and intramolecular ET from 3ZnP to uncomplexed Eu2+ (k(2) = (2.5 +/- 0.5) X 10(3) s(-1)). Intermolecular ET from Eu2+ escaped from the crown ether void to ZnP.+ (k(tau) = (4.3 +/- 0.7) X 10(8) M(-1) s(-1)) seems to be the main pathway of charge recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved fluorescence studies were carried out on a series of free-base and zinc(II) derivatives of meso-tetraphenylporphyrins covalently linked to either 1,3-dinitrobenzene (DNB) or 1,3,5-trinitrobenzene (TNB) acceptor units. These acceptor units were linked at different sites (at the ortho, meta or para positions of one of the phenyl groups of meso-tetraphenylporphyrin) to the donor porphyrins such that the resulting isomeric intramolecular donor-acceptor complexes exhibit different centre-to-centre (ctc) distances and relative orientations. Biexponential fluorescence decay profiles observed for several of these covalently linked complexes were rationalized in terms of the presence of ''closed'' and ''extended'' conformers. Detailed analyses of the fluorescence decay data have provided a comprehensive understanding of the photoinduced electron transfer (PET) reactions occurring in systems containing zinc(II) porphyrin donors. It is observed that although DNB-linked zinc(II) complexes follow the trends predicted for the efficiency of PET with respect to donor-acceptor distance, the TNB-linked zinc(II) porphyrins exhibit a behaviour which is dictated by steric effects. Similarly, although the thermodynamic criteria predict a greater efficiency of charge separation in TNB-linked complexes compared with DNB-linked complexes, the reverse trend observed has been attributed to orientational effects. In the complexes containing free-base porphyrin donors, PET is expected to be less efficient from a thermodynamic viewpoint. In a few of these cases, fluorescence quenching seems to occur by parallel mechanisms other than PET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way. (C) 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the observation of giant photo induced optical bleaching in Sb/As(2)S(3) multilayered film at room and liquid He temperatures, when irradiated with 532 nm laser at moderate intensities. The experimental results show a dramatic increase in transmittance near the band gap regime at both the temperatures; however the rates at which transmission change occurs are rather slow at low temperature. The huge change in transmission is due to the photo induced intermixing of As(2)S(3) layer with Sb. Our XPS measurements show that photo induced intermixing occurs through the wrong homopolar bonds, which under actinic light illumination are converted into energetically favored hetropolar bonds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the kinetics of photoinduced effects in nanolayered Se/As2S3 film by in situ optical absorption measurements, which reveal that photodarkening in these films is followed by photoinduced diffusion. An increase in disorder during photodarkening and its subsequent decrease during photoinduced diffusion were also observed. The observation of photodarkening of Se at room temperature when confined between As2S3 layers suggests that the glass transition temperature of Se shifts to higher energy. The analysis shows that the atoms which take part in photodarkening play a vital role in photoinduced diffusion. The x-ray photoelectron spectroscopy measurements show the atomic movements during photoinduced diffusion. It also shows that some of the As–S bonds are converted into As–Se bonds. Since it is energetically difficult to break an As–S bond to form an As–Se bond, we assume that the new bond formations are taking place by the bond rearrangement mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical parameters of chalcogenide glass multilayers with 12–15 nm modulation lengths prepared by thermal evaporation can be changed by laser irradiation. Photoluminescence (PL) studies were carried out on such nonirradiated and irradiated multilayered samples of a-Se/As2S3 (sublayer thickness of a-Se is 4–5 nm for one set of samples and 1–2 nm for the other set. However As2S3 sublayer thickness is 11–12 nm for both sets of samples.) PL intensity can be increased by several orders of magnitude by reducing the Se well layer (lower band gap) thickness and can be further increased by irradiating the samples with appropriate wavelengths in the range of the absorption edge. The broadening of luminescence bands takes place either with a decrease in Se layer thickness or with irradiation. The former is due to the change in interface roughness and defects because of the enhanced structural disorder while the latter is due to photoinduced interdiffusion. The photoinduced interdiffusion creates defects at the interface between Se and As2S3 by forming an As–Se–S solid solution. From the deconvoluted PL spectrum, it is shown that the peak PL intensity, full width half maximum, and the PL quantum efficiency of particular defects giving rise to PL, can be tuned by changing the sublayer thickness or by interdiffusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoinduced hydrogen elimination reaction in thiophenol via the conical intersections of the dissociative (1)pi sigma* excited state with the bound (1)pi pi* excited state and the electronic ground state has been investigated with ab initio electronic-structure calculations and time-dependent quantum wave-packet calculations. A screening of the coupling constants of the symmetry-allowed coupling modes at the (1)pi pi*-(1)pi sigma* and (1)pi sigma*-S-0 conical intersection shows that the SH torsional mode is by far the most important coupling mode at both conical intersections. A model including three intersecting potential-energy surfaces (S-0, (1)pi pi*, (1)pi sigma*) and two nuclear degrees of freedom (SH stretch and SH torsion) has been constructed on the basis of ab initio complete-active-space self-consistent field and multireference second-order perturbation theory calculations. The nonadiabatic quantum wave-packet dynamics initiated by optical excitation of the (1)pi pi* and (1)pi sigma* states has been explored for this three-state two-coordinate model. The photodissociation dynamics is characterized in terms of snapshots of time-dependent wave packets, time-dependent electronic population probabilities, and the branching ratio of the (2)sigma/(2)pi electronic states of the thiophenoxyl radical. The dependence of the timescale of the photodissociation process and the branching ratio on the initial excitation of the SH stretching and SH torsional vibrations has been analyzed. It is shown that the node structure, which is imposed on the nuclear wave packets by the initial vibrational preparation as well as by the transitions through the conical intersections, has a profound effect on the photodissociation dynamics. The effect of additional weak coupling modes of CC twist (nu(16a)) and ring-distortion (nu(16b)) character has been investigated with three-dimensional and four-dimensional time-dependent wave-packet calculations, and has been found to be minor. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4709608]