11 resultados para photoexpansion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irreversible photoexpansion and photobleaching effect has been observed in amorphous Ga10Ge25S65 glass when its surface was exposed to light with energy greater than the band gap, 3.52 eV. The magnitude of the expansion of GaGeS glasses depends on the exposure conditions. Extended X-ray absorption fine structure (EXAFS) spectroscopy and Rutherford backscattering spectrometry (RBS) have been used to identify the chemical nature of the glass samples before and after illumination. The quantitative analysis of the EXAFS data leads to a two-shell model of 0.5 oxygen atoms at 2.01 Angstrom and 3.6 sulfur atoms at a 2.20 Angstrom. RBS technique demonstrated that chemical composition of the glass surface after irradiation is oxygen rich. The existence of Ge-O bonds in the glass after illumination was also confirmed by infrared measurements. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoexpansion and photobleaching effects have been examined in glass compositions Ga10Ge25S65 and Ga5Ge25As5S65. Such compositions are promising for optical storage and planar waveguide applications. To evaluate the photoinduced effect, samples were exposed to 351 nm light, varying power density (3-10 W/cm(2)) and exposure time (0-120 min). The exposed areas have been analyzed using atomic force microscopy (AFM) and an expansion of 800 nm is observed for composition Ga10Ge25S65 exposed during 120 min and 5 W/cm(2) power density. The optical absorption edge measured by a spectrophotometer indicates a blue shift (80 nm) after illumination in the composition Ga10Ge25S65. The morphology was examined using a scanning electron microscopy (SEM). The chemical compositions measured using a energy dispersive analyzer (EDX) indicate an increase of the number of sulfur atoms in the irradiated area. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxysulphide glasses have been prepared in the pseudo binary system GeS(2.6)-Ga(2)O(3). The effect of addition of gallium oxide has been evaluated in term of thermal and optical properties. Structural behavior has been studied using Raman spectroscopy. Samples have been exposed above band gap energy (3.52 eV) varying power density and exposure time. Giant photoexpansion and photorefraction is obtained for samples containing 20% of Ga(2)O(3). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoexpansion and photobleaching effects have been observed in amorphous GeS(2) + Ga(2)O(3) (GGSO) thin films, when their surfaces were exposed to UV light. The photoinduced changes on the surface of the samples are indications that the structure has been changed as a result of photoexcitation. In this paper, micro-Raman, energy dispersive X-ray analysis (EDX) and backscattering electrons (BSE) microscopy were the techniques used to identify the origin of these effects. Raman spectra revealed that these phenomena are a consequence of the Ge-S bonds` breakdown and the formation of new Ge-O bonds, with an increase of the modes associated with Ge-O-Ge bonds and mixed oxysulphide tetrahedral units (S-Ge-O). The chemical composition measured by EDX and BSE microscopy images indicated that the irradiated area is oxygen rich. So, the present paper provides fundamental insights into the influence of the oxygen within the glass matrix on the considered photoinduced effects. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of time exposure, when exposed to above band gap light (3,52 eV) and annealing, on Ga10Ge25S65 glasses has been studied through their effects on the structure and optical properties. To evaluate the photostructural change infrared and Raman spectra for bulk Ga10Ge25S65 glasses have been measured before and after exposure. The Raman spectra are interpreted in terms of models in which the Ge atoms are fourfold coordinated and the S atoms are two fold coordinated. The observed changes in the spectral region of (S-S) stretching vibration (470-490 cm (-1)) is a direct evidence for the occurrence of important structural changes in local bonding configuration caused by optical irradiation. It is shown that the dominant photostrucural changes are chain formation tendency of the chalcogenide atoms under the laser irradiation rather than rings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Irreversible photoexpansion effect has been observed in amorphous Ga10Ge2S65 glasses when its surface was exposed to light with energy greater than the band gap, 3.52 eV. A volume change of about 5% was reached in bulk samples by controlling illumination time and the laser power density. To understand the atomic scale processes of the photoexpansion effect, extended X-ray absorption fine structure (EXAFS) spectroscopy has been used as a local probe of the germanium environment in the glass samples before and after illumination. Modifications are observed in the average coordination shell around Ge atoms in the illuminated sample compared to the non-illuminated one. For the non-illuminated sample, the Ge coordination shell is described by a distorted tetrahedron of sulfur atoms at around 2.20 Angstrom. After illumination, the EXAFS signal can be explained by introducing an additional contribution to this average environment. Based on an analysis of the EXAFS data we proposed a two-shell model of 0.5 oxygen atoms at 2.01 Angstrom and 3.6 sulfur atoms at a 2.20 Angstrom. The existence of Ge-O bonds in the glass after illumination was confirmed by infrared measurements. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glassy films of Ga10Ge25S65 with 4 mu m thickness were deposited on quartz substrates by electron beam evaporation. Photoexpansion (PE) (photoinduced increase in volume) and photobleaching (PB) (blue shift of the bandgap) effects have been examined. The exposed areas have been analyzed using perfilometer and an expansion of 1.7 mu m (Delta V/V approximate to 30%) is observed for composition Ga10Ge25S65 exposed during 180 min and 3 mW/cm(2) power density. The optical absorption edge measured for the film Ge25Ga10S65 above and below the bandgap show that the blue shift of the gap by below bandgap photon illumination is considerable higher (Delta E-g = 440 meV) than Delta E-g induced by above bandgap illumination (Delta E-g = 190 meV). The distribution of the refraction index profile showed a negative change of the refraction index in the irradiated samples (Delta n = -0.6). The morphology was examined using a scanning electron microscopy (SEM). The chemical compositions measured using an energy dispersive analyzer (EDX) indicate an increase of the oxygen atoms into the irradiated area. Using a Lloyd's mirror setup for continuous wave holography it was possible to record holographic gratings using the photoinduced effects that occur in them. Diffraction efficiency up to 25% was achieved for the recorded gratings and atomic force microscopy images are presented. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoexpansion and photobleaching effects have been observed in amorphous GeS2 + Ga2O3 (GGSO) thin films, when their surfaces were exposed to UV light. The photoinduced changes on the surface of the samples are indications that the structure has been changed as a result of photoexcitation. In this paper, micro-Raman, energy dispersive X-ray analysis (EDX) and backscattering electrons (BSE) microscopy were the techniques used to identify the origin of these effects. Raman spectra revealed that these phenomena are a consequence of the Ge-S bonds' breakdown and the formation of new Ge-O bonds, with an increase of the modes associated with Ge-O-Ge bonds and mixed oxysulphide tetrahedral units (S-Ge-O). The chemical composition measured by EDX and BSE microscopy images indicated that the irradiated area is oxygen rich. So, the present paper provides fundamental insights into the influence of the oxygen within the glass matrix on the considered photoinduced effects. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During this work, done mainly in the laboratories of the department of Industrial Chemistry and Materials of the University of Bologna but also in the laboratories of the Carnegie Mellon University in collaboration with prof. K. Matyjaszewski and at the university of Zaragoza in collaboration with prof. J. Barberá, was focused mainly on the synthesis and characterization of new functional polymeric materials. In the past years our group gained a deep knowledge about the photomodulation of azobenzene containing polymers. The aim of this thesis is to push forward the performances of these materials by the synthesis of well defined materials, in which, by a precise control over the macromolecular structures, better or even new functionality can be delivered to the synthesized material. For this purpose, besides the rich photochemistry of azoaromatic polymers that brings to the application, the control offered from the recent techniques of controlled radical polymerization, ATRP over all, gives an enormous range of opportunity for the developing of a new generation of functional materials whose properties are determinate not only by the chemical nature of the functional center (e.g. azoaromatic chromophore) but are tuned and even amplified by a synergy with the whole macromolecular structure. Old materials in new structures. In this contest the work of this thesis was focused mainly on the synthesis and characterization of well defined azoaromatic polymers in order to establish, for the first time, precise structure-properties correlation. In fact a series of well defined different azopolymers, chiral and achiral, with different molecular weight and highly monodisperse were synthesized and their properties were studied, in terms of photoexpansion and photomodulation of chirality. We were then able to study the influence of the macromolecular structure in terms of molecular weight and ramification on the studied properties. The huge amount of possibility offered by the tailoring of the macromolecular structure were exploited for the synthesis of new cholesteric photochromic polymers that can be used as a smart label for the certification of the thermal history of any thermosensitive product. Finally the ATRP synthesis allowed us to synthesize a total new class of material, named molecular brushes: a flat surface covered with an ultra thin layer of polymeric chain covalently bond onto the surface from one end. This new class of materials is of extreme interest as they offer the possibility to tune and manage the interaction of the surface with the environment. In this contest we synthesized both azoaromatic surfaces, growing directly the polymer from the surface, and mixed brushes: surfaces covered with incompatible macromolecules. Both type of surfaces acts as “smart” surfaces: the first it is able to move the orientation of a LC cell by simply photomodulation and, thanks to the robustness of the covalent bond, can be used as a command surface overcoming all the limitation due to the dewetting of the active layer. The second type of surface, functionalized by a grafting-to method, can self assemble the topmost layer responding to changed environmental conditions, exposing different functionality according to different environment.