995 resultados para photocatalytic property


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an efficient solar-light-driven photocatalyst based on three-dimensional nanoporous tungsten trioxide (WO3) films. These films are obtained by anodizing W foils in fluoride-containing electrolytes at room temperature and under low applied voltages with an efficient growth rate of 2 μm h− 1. The maximum thickness of the films is ~ 3 μm that exceeds those of previously reported anodized WO3 films in fluoride-containing electrolytes. By investigating the photocatalytic properties of the films with thicknesses ranging from ~ 0.5 to ~ 3 μm, the optimum thickness of the nanoporous film is found to be ~ 1 μm, which demonstrates an impressive 120% improvement in the photocatalytic performance compared to that of a RF-sputtered nanotextured film with similar weights. We mainly ascribe this to large surface area and smaller bandgap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new series of compounds identified in the phase diagram of ZrO(2)-V(2)O(8)-MoO(3) have been synthesized via the solution combustion method. Single crystals of one of the compounds in the series, ZrV(1.50)Mo(0.50)O(7.25), were grown by the melt-cool technique from the starting materials with double the MoO(3) quantity. The room temperature average crystal structure of the grown crystals was solved using the single crystal X-ray diffraction technique. The crystals belong to the cubic crystal system, space group Pa (3) over bar (No. 205) with a = 8.8969 (4) angstrom, V = 704.24 (6) angstrom(3), and Z = 4. The final R(1) value of 0.0213 was achieved for 288 independent reflections during the structure refinement. The Zr(4+) occupies the special position (4a) whereas V(5+) and Mo(6+) occupy two unique (8c) Wyckoff positions. Two fully occupied O atoms, (24d) and (4b), one partially occupied 0 atom (8c) have been identified for this molybdovanadate, which is a unique feature for these crystals. The structure is related to both ZrV(2)O(7) and cubic ZrMo(2)O(8). The temperature dependent single crystal studies show negative thermal expansion above 370 K. The compounds have been characterized by powder X-ray diffraction, solid-state UV-vis diffuse reflectance spectra, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The photocatalytic activity of these compounds has been investigated for the degradation of various dyes, and these compounds show specificity toward the degradation of non-azoic dyes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel flowerlike SnS2 and In3+-doped SnS2 hierarchical structures have been successfully synthesized by a simple hydrothermal route using biomolecular L-Cysteine-assisted methods. The L-cysteine plays an important role both as assistant and as sulfur source. Experiments with various parameters indicate that the pH values have a strong effect on the morphology of the assembly. Based on the experiments, a growth mechanical process was proposed. The synthetic samples were characterized by XRD, SEM, TEM (HRTEM), BET measurement, TGA, and XPS in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO nanoparticles doped with up to 5 at% of Co and Mn were prepared using a co-precipitation method. The location of dopant ions and the effect of doping on the photocatalytic activity were investigated. The crystal structure of nanoparticles and local atomic arrangements around dopant ions were analyzed by X-ray absorption spectroscopy. The results showed that the Co ions substituted the Zn ions in the ZnO wurtzite phase structure and induced lattice shrinkage, while Mn ions were not completely incorporated in the crystal lattice. The photocatalytic activity under simulated sunlight was characterized by the decomposition of Rhodamine B dye molecules. It was revealed that Co-doping strongly reduced the photocatalytic activity but Mn-doping showed a weaker effect on the reduction of the photoactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co and Mn doped ZnO nanoparticles with up to 5 at% doping level were prepared using a mechanochemical method. The location of dopant ions and the effect of doping on the photocatalytic activity were investigated by Synchrotron X-ray Absorption (XAS) Spectroscopy and photo-degradation of Rhodamine B solution. The XAS results showed that the Co ions substituted the Zn ions in the ZnO wurtzite phase structure. It was revealed that Co-doping strongly reduced the photocatalytic activity, while Mn-doping increased the photocatalytic activity at low doping levels but reduced the activity at high doping levels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) uniformly decorated with nano-anatase TiO2 particles corresponding to different TiO2-CNT weight ratios (up to 90 % TiO2:10 % CNT) were prepared by employing sol-gel process. The nanocomposites were characterized by X-ray diffraction, IR, Raman, Scanning electron microscopy, Transmission electron microscopy, Photoluminescence, BET surface area and diffuse reflectance measurements. The composites show visible light assisted photocatalytic property, for example, the 90 % TiO2-10 % CNT composite completely degrades Indigo Carmine dye within 1 h of exposure to visible light. Similarly, Orange G and Congo Red dyes were decomposed within 2 h under visible light irradiation. The excellent visible light photocatalytic property of the composite is attributed to the synergetic effect of photoexcitation and photosensitization. This is due to the special nanoarchitecture wherein TiO2 nanoparticles are anchored to CNT surface that provides high specific interfacial area for photon absorption and electron trapping. Visible light assisted degradation profile of Indigo Carmine in the presence of TiO2-CNT nanocomposite and TEM image of the TiO2-CNT nanocomposite.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Photocatalytic oxidation (PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO2 powder in nanometre size range was directly used as photocatalyst for dye degradation in wastewater. However the titanium dioxide powder was arduous to be recovered from the solution after treatment. In this application, a new form of TiO2 (i.e. pillar pellets ranging from 2.5 to 5.3 mm long and with a diameter of 3.7 mm) was used and investigated for photocatalytic degradation of textile dye effluent. A test system was built with a flat plate reactor (FPR) and UV light source (blacklight and solar simulator as light source respectively) for investigating the effectiveness of the new form of TiO2. It was found that the photocatalytic process under this configuration could efficiently remove colours from textile dyeing effluent. Comparing with the TiO2 powder, the pellet was very easy to recovered from the treated solution and can be reused in multiple times without the significant change on the photocatalytic property. The results also showed that to achieve the same photocatalytic performance, the FPR area by pellets was about 91% smaller than required by TiO2 powder. At least TiO2 pellet could be used as an alternative form of photocatalyst in applications for textile effluent treatment process, also other wastewater treatment processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports our initial research to obtain SrWO4 microcrystals by the injection of ions into a hot aqueous solution and their photocatalytic (PC) properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The shape and average size of these SrWO 4 microcrystals were observed by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In addition, we have investigated the PC activity of microcrystals for the degradation of rhodamine B (RhB) and rhodamine 6G (Rh6G) dyes. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy confirmed that SrWO4 microcrystals have a scheelite-type tetragonal structure without deleterious phases. FT-Raman spectra exhibited 12 Raman-active modes in a range from 50 to 1000 cm-1. FE-SEM and TEM images suggested that the SrWO4 microcrystals (rice-like - 95%; star-, flower-, and urchin-like - 5%) were formed by means of primary/secondary nucleation events and self-assembly processes. Based on these FE-SEM/TEM images, a crystal growth mechanism was proposed and discussed in details in this work. Finally, a good PC activity was first discovered of the SrWO4 microcrystals for the degradation of RhB after 80 min and Rh6G after 50 min dyes under ultraviolet-light, respectively. © 2012 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Much has been talking about the advantages of polymeric nanocomposites, but little is known about the influence of nanoparticles on the stability of these materials. In this sense, we studied the influence of both oxides of zirconium and titanium, known to have photocatalytic properties, as well as the influence of synthetic clay Laponite on the photodegradation of styrene-butadiene rubber (SBR). SBR nanocomposites were prepared by the colloidal route by mixing commercial polymer lattices and nanometric anatase TiO2, monoclinic ZrO2 or exfoliated Laponite clays colloidal suspensions. To better understand the degradation mechanisms that occur in these nanocomposites, the efficiency of different photocatalysts under ultraviolet radiation was monitored by FT-IR and UV-vis spectroscopies and by differential scanning calorimetric. It was observed that TiO2 and ZrO2 nanoparticles undoubtedly acted as catalysts during the photodegradation process with different efficiencies and rates. However, when compared to pure SBR samples, the polymer degradation mechanism was unaffected. Unlike studies with nanocomposites montmorillonite, exfoliated laponite clay effectively acts as a photostabilizer of polymer UV photodegradation. Copyright © 2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three porous amorphous silica minerals, including diatomite, opal and porous precipitated SiO2wereadopted to prepare supported TiO2catalysts by hydrolysis–deposition method. The prepared compoundmaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fouriertransform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Through morphology and physical chemistry properties of the resultingTiO2/amorphous SiO2catalysts, it was proposed that the nature of silica supports could affect the particlesize and the crystal form of TiO2and then further influence the photocatalytic property of TiO2/amorphousSiO2catalysts. The catalytic properties of these porous amorphous silica supported photocatalysts(TiO2/SiO2) were investigated by UV-assisted degradation of Rhodamine B (RhB). Compared with pureTiO2(P25) and the other two TiO2/amorphous SiO2catalysts, TiO2/diatomite photocatalyst exhibits bet-ter catalytic performance at different calcined temperatures, the decoloration rate of which can be upto over 85% even at a relatively low calcined temperature. The TiO2/diatomite photocatalyst possessesmixed-phase TiO2with relatively smaller particles size, which might be responsible for higher photo-catalytic activity. Moreover, the stable and much inerter porous microstructure of diatomite could beanother key factor in improving its activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dual photoluminescence (PL) emission characteristics of Mn2+ doped ZnS (ZnS:Mn) quantum dots (QDs) have drawn a lot of attention recently. However, here we report the effect of thermal annealing on the PL emission characteristics of uncapped ZnS:Mn QDs of average sizes similar to 2-3 nm, synthesized by simple chemical precipitation method by using de-ionized (DI) water at room temperature. As-synthesized samples show dual PL emissions, having one UV PL band centred at similar to 400 nm and the other in the visible region similar to 610 nm. But when the samples are isochronally annealed for 2 h at 100-600 degrees C temperature range in air, similar to 90% quenching of Mn2+ related visible PL emission intensity takes place at the annealing temperature of 600 degrees C. X-ray diffraction data show that the as-synthesized cubic ZnS has been converted to wurtzite ZnO at 600 degrees C annealing temperature. The nanostructural properties of the samples are also determined by transmission electron micrograph, electron probe micro-analyser and UV-vis spectrophotometry. The photocatalytic property of the annealed ZnS:Mn sample has been demonstrated and photo-degradation efficiency of the as-synthesized and 600 degrees C annealed ZnS:Mn sample has been found out to be similar to 35% and similar to 61%, respectively, for the degradation of methylene blue dye under visible light irradiation. The synthesized QDs may find significant applications in future optoelectronic devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three types of titania supported materials including titanium dioxide and silicon dioxide composite, titania-coated activated carbon and titania-coated glass beads were prepared and used as photocatalysts to remove toluene from an air stream. Their surface areas were analysed. TEM image reveals titania-silica composites were nanostructured aggregates. XRD was used to determine their crystalline phase which was 100% anatase for the titania component. A fixed bed reactor was designed and built in the laboratory, the toluene with initial concentration of 300 ppm (1149 mg/m3) was fed into the reactor, the destruction efficiencies of toluene were determined by the gas analyser. It was also found that TiO2-SiO2 aggregates with high surface area (421.1 m2/g) achieved high destruction efficiencies. The combined effects of adsorption and photocatalysis were further studied by comparing the performance of pure activated carbon (surface area of 932.4 m2/g) and TiO2 coated activated carbon with BET surface area of 848.4 m2/g. It was found that the TiO2 coated activated carbon demonstrated comparable results to pure activated carbon, and most importantly, the TiO2-coated activated carbon can be effectively regenerated by UV irradiation, and was reused as adsorbent. The experimental result of titania-coated glass beads demonstrated a steady degradation efficiency of 15% after a period of 17 hours. It helped to understand that photocatalysis degradation ability of the TiO2 was constant regardless of the adsorption capacity of the catalysts. This photocatalytic property can be used to degrade the adsorbed toluene and regenerate the catalyst. This study revealed that if the experiments were designed to use adsorption to remove toluene and followed by regeneration of adsorbent using photocatalysis, it could achieve a very high removal efficiency of toluene and reduce the regeneration cost of saturated adsorbent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium dioxide is one of the most basic materials in our daily life, which has emerged as an excellent photocatalyst material for environmental purification and photovoltaic material working in dye-sensitized solar cell. We present two types of TiO2 architectures which are constructed by plates and sheets, respectively, and both subunits are dominant with {001} facets. The photocatalytic degradation of methyl orange in UV/supported-TiO2 systems was investigated and the mechanism was discussed. The experimental results show that photocatalytic degradation rate is favoured by larger surface area. The sheet structure shows superior photocatalytic activity than plate structure. Moreover, the materials with sheet structure were also used to investigate the photovoltaic property. The power conversion efficiency is 7.57%, indicating the materials with this unique structure are excellent in photocatalytic and photovoltaic applications.