985 resultados para photo-thermal deformation
Resumo:
Superabsorbent polymers (SAPs) based on acrylic acid (AA), sodium acrylate (SA), and acrylamide (AM) were synthesized by inverse suspension polymerization using ethylene glycol dimethacrylate as the crosslinking agent. The equilibrium swelling capacities and the rates of swelling of SAPs varied with the AM content and followed first-order kinetics. The photodegradation of SAPs in their equilibrium swollen state was carried out by monitoring their swelling capacity and the residual weight fraction. The SAPs degraded in two stages, wherein the swelling capacity increased to a maximum and then subsequently decreased. Thermogravimetric analysis of the SAPs indicated that the copolymeric superabsorbents had intermediate thermal stability between the homopolymeric superabsorbents. The activation energies of SAPs with 0, 20, and 100 mol % AM content were determined by Kissinger method and were found to be 299, 248, and 147 kJ mol-1, respectively. The ultrasonic degradation of the superabsorbents was carried out in their equilibrium swollen state, and the change in the viscosity with ultrasonication time was used to quantify the degradation. The ultrasonic degradation of AA/SA superabsorbent was also investigated at various ultrasound intensities. The degradation rate coefficients were found to increase with the intensity of ultrasound. The ultrasonic degradation of AA/SA/AM (20% AM) was also carried out, and degradation rate was found to be more than that of the AA/SA superabsorbent. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
Photo-thermal Deflection (PTD) technique is used to investigate the thermal diffusivity (alpha) of Ge17Te83 - xTlx (0 <= x <= 13) glasses as a function of composition. The thermal diffusivity of these glasses is found to lie in the range 0.020 to 0.048 cm(2)/s, which is consistent with the memory type of electrical switching exhibited by these samples. Further, it is found that alpha shows an initial increase with Tl addition, followed by a decrease. The observed composition dependence of thermal diffusivity has been understood on the basis that the thallium atoms are incorporated as a covalent species for lower values of x, increasing the network rigidity; however, they enter as ionic species for higher x values, fragmenting the network. The initial increase in a is due to the increasing network rigidity and the subsequent decrease is because of the fragmentation of the network. Also, there is a strong correlation between the composition dependence of switching voltages observed earlier and the variation with composition of electrical resistivity and thermal diffusivity of Ge17Te83 - xTlx glasses obtained in the present study. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report here, a finite difference thermal diffusion (FDTD) model for controlling the cross-section and the guiding nature of the buried channel waveguides fabricated on GeGaS bulk glasses using the direct laser writing technique. Optimization of the laser parameters for guiding at wavelength 1550 nm is done experimentally and compared with the theoretical values estimated by FDTD model. The mode field diameter (MFD) between 5.294 mu m and 24.706 mu m were attained by suitable selection of writing speed (1mm/s to 4 mm/s) and pulse energy (623 nJ to 806 nJ) of the laser at a fixed repletion rate of 100 kHz. Transition from single-mode to multi-mode waveguide is observed at pulse energy 806nJ as a consequence of heat accumulation. The thermal diffusion model fits well for single-mode waveguides with the exception of multi-mode waveguides.
Resumo:
Effects of various combinations of photoperiod and temperature (NL-NT, LD 15:9-28°C, NL-28°C and LD 15:9 NT) were studied on testicular activity and pituitary gonadotropic cells in Channa punctatus during resting phase of reproductive cycle. Long photoperiod (LD 15:9-28°C) and warm temperature (NL-28°C) regimes were found to be more effective for testicular maturation and secretory activity of gonadotropic cells suggesting testicular maturation via brain-pituitary-testicular axis.
Resumo:
Mounting accuracy of satellite payload and ADCS (attitude determination and control subsystem) seats is one of the requirements to achieve the satellite mission with acceptable performance. Components of mounting inaccuracy are technological inaccuracies, residual plastic deformations after loading (during transportation and orbital insertion), elastic deformations, and thermal deformations during orbital operation. This paper focuses on estimation of thermal deformations of satellite structure. Thermal analysis is executed by applying finite-difference method (IDEAS) and temperature profile for satellite components case is evaluated. Then, Perform thermal finite-element analysis applying the finite-difference model results as boundary conditions; and calculate the resultant thermal strain. Next, applying the resultant thermal strain, perform finite-element structure analysis to evaluate structure deformations at the payload and ADCS equipments seats.
Resumo:
We discuss a novel approach to the development of an ultrasonic optical force-feedback measurement microphone suitable for observing biophotonic related photoacoustic and photothermal phenomena at high modulation frequencies and spatial resolution.
Resumo:
The phenology of 11 diverse accessions of wild mungbean was observed under natural and artificial photoperiod - temperature conditions, in order to examine whether genotypic differences might be attributed to adaptive responses to photo-thermal conditions. There was large variation in phenological response among accessions and across environments, much of which was due to differences in the duration of the pre-flowering phase. Accessions that flowered earlier tended to flower for longer, apart from 2 earlier flowering, inland Australian lines that were also earlier maturing. The patterns of response in time from sowing to flowering over environment were consistent with quantitative short-day photoperiodic adaptation, a conclusion supported by the effects of artificial day-length extension and by 'goodness of fit' of the observed responses to standard models relating rate of development to photoperiod and temperature. The fitted models indicated that rate of development towards flowering was hastened by warmer temperatures, and delayed by longer day lengths, with differential sensitivity between accessions to both factors. The models also suggested that photoperiod was more important for accessions collected closer to the equator, which were generally later flowering as a consequence. Conversely, temperature was relatively more important in lines from higher latitudes. Modelling also suggested that the period from first flowering to maturity was sensitive to photoperiod and temperature. Again, longer days appeared to prolong growth and delay maturity. However, cooler temperatures accelerated rather than slowed maturity, by suppressing further vegetative growth. The variation observed indicated that there is considerable scope for using the wild population to broaden the adaptation of cultivated mungbean. In particular, the unusual response of a late-flowering, photoperiod-insensitive accession warrants further study to establish whether the wild population contains a unique 'long juvenile' trait analogous to that being used for improving phenological adaptation in soybean.
Resumo:
The leaf growth, dry matter production, and seed yield of 11 wild mungbean ( Vigna radiata ssp. sublobata) accessions of diverse geographic origin were observed under natural and artificial photoperiod temperature conditions, to determine the extent to which genotypic differences could be attributed to adaptive responses to photo-thermal environment. Environments included serial sowings in the field in SE Queensland, complemented by artificial photoperiod extension and controlled-environment growth rooms. Photo-thermal environment influenced leaf growth, total dry matter production ( TDM), and seed yield directly, through effects of ( mainly cool) temperature on growth, and indirectly, through effects on phenology. In terms of direct effects, leaf production, leaf expansion, and leaf area were all sensitive to temperature, with implied base temperatures higher than usually observed in cultivated mungbean ( V. radiata ssp. radiata). Genotypic sensitivity to temperature varied systematically with accession provenance and appeared to be of adaptive significance. In terms of the indirect effects of photo-thermal environment, genotypic and environmental effects on TDM were positively related to changes in total growth duration, and harvest index was negatively related to the period from sowing to flowering, similar to cultivated mungbean. However, seed yield was positively related to the duration of reproductive growth, reflecting the indeterminate growth habit of the wild accessions. As a consequence, the wild accessions are more responsive to favourable environments than typically observed in cultivated mungbean, which is determinate in habit. It is suggested that the introduction of the indeterminate trait into mungbean from the wild subspecies would increase the responsiveness of mungbean to favourable environments, analogous to that of black gram ( V. mungo). Although the wild subspecies appeared more sensitive to cool temperature than cultivated mungbean, it may provide a source of tolerance to the warmer temperatures experienced during the wet season in the tropics.
Resumo:
为提高表面热透镜薄膜吸收测量仪的灵敏度,在表面热透镜衍射理论基础上,通过数值模拟给出了探测激光腰斑半径、探测激光腰斑到样品表面距离、样品到探测光纤端面距离等仪器参数的优化方法.经优化调整后该仪器能达到优于0.1ppm量级的薄膜吸收率测量灵敏度.
Resumo:
The thermal properties of a micro-electromechanical system sensor were analysed by a novel digital moire method. A double-layer micro-cantilever sensor (60 mu m long, 10 mu m width and 2 mu dm thick) was prepared by focused ion beam milling. A grating with frequency of 5000 lines mm- I was etched on the cantilever. The sensor was placed into a scanning electron microscope system with a high temperature device. The observation and recording of the thermal deformation of the grating were realised in real-time as the temperature rose from room temperature to 300 degrees C at intervals of 50 degrees C. Digital moire was generated by interference of the deformed grating and a digital virtual grating. The thermal properties including strain distribution of the sensor and the linear expansion coefficient of polysilicon were accurately measured by the phase-shifted moire patterns.
Resumo:
Thermally induced recovery of nanoindents in a CUAINi single crystal shape memory alloy was studied by nanoindentation in conjunction with a heating stage. Nanoindents formed by a Berkovich indenter at room temperature were heated to 40, 70 and 100 degrees C. Partial recovery was observed for the nanoindents. The recovery ratio depended on the heating temperature. Indentation of CuAlNi can induce inelastic deformation via dislocation motion and a stress-induced matensitic transformation. The percentages of dislocation-induced plastic strain would affect the thermal deformation of CuAlNi, because the induced dislocations could stabilize stress-induced martensite plates even when the temperature above austenite finish temperature, A(f). When the applied indentation load is low (less than 10,000 mu N), the shape recovery strain is predominant, compared with the dislocation-induced plastic strain. Therefore, the degree of indent recovery in the depth direction, delta(D), is high (about 0.7-0.8 at 100 degrees C).
Resumo:
The ability to predict phenology and canopy development is critical in crop models used for simulating likely consequences of alternative crop management and cultivar choice strategies. Here we quantify and contrast the temperature and photoperiod responses for phenology and canopy development of a diverse range of elite Indian and Australian sorghum genotypes (hybrid and landrace). Detailed field experiments were undertaken in Australia and India using a range of genotypes, sowing dates, and photoperiod extension treatments. Measurements of timing of developmental stages and leaf appearance were taken. The generality of photo-thermal approaches to modelling phenological and canopy development was tested. Environmental and genotypic effects on rate of progression from emergence to floral initiation (E-FI) were explained well using a multiplicative model, which combined the intrinsic development rate (Ropt), with responses to temperature and photoperiod. Differences in Ropt and extent of the photoperiod response explained most genotypic effects. Average leaf initiation rate (LIR), leaf appearance rate and duration of the phase from anthesis to physiological maturity differed among genotypes. The association of total leaf number (TLN) with photoperiod found for all genotypes could not be fully explained by effects on development and LIRs. While a putative effect of photoperiod on LIR would explain the observations, other possible confounding factors, such as air-soil temperature differential and the nature of model structure were considered and discussed. This study found a generally robust predictive capacity of photo-thermal development models across diverse ranges of both genotypes and environments. Hence, they remain the most appropriate models for simulation analysis of genotype-by-management scenarios in environments varying broadly in temperature and photoperiod.
Resumo:
Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phonon mode is excited from one end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.
Resumo:
在星间激光通信中,涉及对大口径衍射极限激光波面的检测,为保证测量精度,必须严格控制波面十涉仪镜子的自重和温度变形。采用有限元方法对大型干涉仪镜子在不同支承方式下的表面变形进行了分析,结果表明,接触角为180°的钢带支承是较好的支承方式,反射镜表面变形峰-谷(P-V)值仅为1.35nm,均方根(RMS)值为0.363nm根据这一结论,设计了一个同定支承点与浮动支承相结合的超静定钢带支承结构。在该结构下,分析了镜子轴向、径向、周向的温度梯度效应,分析数据表明,镜子的热弹性变形远大于自重变形,建议采取一定的温控
Resumo:
Thermodynamical fluctuations in temperature and position exist in every physical system, and show up as a fundamental noise limit whenever we choose to measure some quantity in a laboratory environment. Thermodynamical fluctuations in the position of the atoms in the dielectric coatings on the mirrors for optical cavities at the forefront of precision metrology (e.g., LIGO, the cavities which probe atomic transitions to define the second) are a current limiting noise source for these experiments, and anything which involves locking a laser to an optical cavity. These thermodynamic noise sources scale physical geometry of experiment, material properties (such as mechanical loss in our dielectric coatings), and temperature. The temperature scaling provides a natural motivation to move to lower temperatures, with a potential huge benefit for redesigning a room temperature experiment which is limited by thermal noise for cryogenic operation.
We design, build, and characterize a pair of linear Fabry-Perot cavities to explore limitations to ultra low noise laser stabilization experiments at cryogenic temperatures. We use silicon as the primary material for the cavity and mirrors, due to a zero crossing in its linear coefficient of thermal expansion (CTE) at 123 K, and other desirable material properties. We use silica tantala coatings, which are currently the best for making high finesse low noise cavities at room temperature. The material properties of these coating materials (which set the thermal noise levels) are relatively unknown at cryogenic temperatures, which motivates us to study them at these temperatures. We were not able to measure any thermal noise source with our experiment due to excess noise. In this work we analyze the design and performance of the cavities, and recommend a design shift from mid length cavities to short cavities in order to facilitate a direct measurement of cryogenic coating noise.
In addition, we measure the cavities (frequency dependent) photo-thermal response. This can help characterize thermooptic noise in the coatings, which is poorly understood at cryogenic temperatures. We also explore the feasibility of using the cavity to do macroscopic quantum optomechanics such as ground state cooling.