903 resultados para photo-oxidation
Resumo:
Isoprene represents the single most important reactive hydrocarbon for atmospheric chemistry in the tropical atmosphere. It plays a central role in global and regional atmospheric chemistry and possible climate feedbacks. Photo-oxidation of primary hydrocarbons (e. g. isoprene) leads to the formation of oxygenated VOCs (OVOCs). The evolution of these intermediates affects the oxidative capacity of the atmosphere (by reacting with OH) and can contribute to secondary aerosol formation, a poorly understood process. An accurate and quantitative understanding of VOC oxidation processes is needed for model simulations of regional air quality and global climate. Based on field measurements conducted during the Amazonian Aerosol Characterization Experiment (AMAZE-08) we show that the production of certain OVOCs (e. g. hydroxyacetone) from isoprene photo-oxidation in the lower atmosphere is significantly underpredicted by standard chemistry schemes. Recently reported fast secondary production could explain 50% of the observed discrepancy with the remaining part possibly produced via a novel primary production channel, which has been proposed theoretically. The observations of OVOCs are also used to test a recently proposed HO(x) recycling mechanism via degradation of isoprene peroxy radicals. If generalized our observations suggest that prompt photochemical formation of OVOCs and other uncertainties in VOC oxidation schemes could result in uncertainties of modelled OH reactivity, potentially explaining a fraction of the missing OH sink over forests which has previously been largely attributed to a missing source of primary biogenic VOCs.
Resumo:
Small changes in DNA sequence can often have major biological effects. Here the rates and yields of guanine photo-oxidation by Λ [Ru(TAP)2(dppz)]2+ have been compared in 5′-{CCGGATCCGG}2 and 5′-{CCGGTACCGG}2 using ps/ns transient visible and time-resolved IR (TRIR) spectroscopy. The inefficiency of electron transfer in the TA sequence is consistent with the 5′-TA-3′ vs. 5′-AT-3′ binding preference predicted by X-ray crystallography. The TRIR spectra also reveal the differences in binding sites in the two oligonucleotides.
Resumo:
Uncertainties in projected ultraviolet (UV) radiation may lead to future increases in UV irradiation of freshwater lakes. Because dissolved organic carbon (DOC) is the main binding phase for mercury (Hg) in freshwater lakes, an increase in DOC photo-oxidation may affect Hg speciation and bioavailability. We quantified the effect of DOC concentration on the rate of abiotic DOC photo-oxidation for five lakes (DOC = 3.27–12.3 mg L−1) in Kejimkujik National Park, Canada. Samples were irradiated with UV-A or UV-B radiation over a 72-h period. UV-B radiation was found to be 2.36 times more efficient at photo-oxidizing DOC than UV-A, with energy-normalized rates of dissolved inorganic carbon (DIC) production ranging from 3.8 × 10−5 to 1.1 × 10−4 mg L−1 J−1 for UV-A, and from 6.0 × 10−5 to 3.1 × 10−4 mg L−1 J−1 for UV-B. Energy normalized rates of DIC production were positively correlated with DOC concentrations. Diffuse integrated attenuation coefficients were quantified in situ (UV-A Kd = 0.056–0.180 J cm−1; UV-B Kd = 0.015–0.165 J cm−1) and a quantitative depth-integrated model for yearly DIC photo-production in each lake was developed. The model predicts that, UV-A produces between 3.2 and 100 times more DIC (1521–2851 mg m−2 year−1) than UV-B radiation (29.17–746.7 mg m−2 year−1). Future increases in UV radiation may increase DIC production and increase Hg bioavailability in low DOC lakes to a greater extent than in high DOC lakes.
Resumo:
The intercalating [Ru(TAP)2(dppz)]2+ complex can photo-oxidise guanine in DNA, although in mixed-sequence DNA it can be difficult to understand the precise mechanism due to uncertainties in where and how the complex is bound. Replacement of guanine with the less oxidisable inosine (I) base can be used to understand the mechanism of electron transfer (ET). Here the ET has been compared for both L- and D-enantiomers of [Ru(TAP)2(dppz)]2+ in a set of sequences where guanines in the readily oxidisable GG step in {TCGGCGCCGA}2 have been replaced with I. The ET has been monitored using picosecond and nanosecond transient absorption and ps-time-resolved IR spectroscopy. In both cases inosine replacement leads to a diminished yield, but the trends are strikingly different for L- and D-complexes.
Resumo:
To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.
Resumo:
Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). PPV derivatives are highly susceptible to photo-oxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (similar to 50 nm) to allow for a more realistic comparison. Degradation was monitored with UV-vis and FTIR spectroscopies. The results indicated that cast films were completely degraded in ca. 400 min, while LB took longer time, i.e. about four times the values for the cast films. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). These derivatives are highly susceptible to photooxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (∼50 nm) to allow for a more realistic comparison. Photodegradation experiments were carried out by illuminating the films with white light from a halogen lamp (50W, 12 V), placed at a fixed dstance from the sample. The decay was monitored by UV-Vis and FTIR spectroscopies. The results showed that cast films are completely degraded in ca. 300 min, while LB took longer times, ca. 1000 min, i.e. 3 times the values for the cast films. The degradation process occurs in at least two stages, the rates of which were calculated assuming that the reaction follows a first order kinetics. The characteristic times for the first stage were 3.6×10-2 and 1.3×10-3 min-1 for cast and LB films, respectively. For the second stage the characteristic times were 5.6×10-2 and 5.0×10 -3 min-1. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process.
Resumo:
Upgrade of biomass to valuable chemicals is a central topic in modern research due to the high availability and low price of this feedstock. For the difficulties in biomass treatment, different pathways are still under investigation. A promising way is in the photodegradation, because it can lead to greener transformation processes with the use of solar light as a renewable resource. The aim of my work was the research of a photocatalyst for the hydrolysis of cellobiose under visible irradiation. Cellobiose was selected because it is a model molecule for biomass depolymerisation studies. Different titania crystalline structures were studied to find the most active phase. Furthermore, to enhance the absorption of this semiconductor in the visible range, noble metal nanoparticles were immobilized on titania. Gold and silver were chosen because they present a Surface Plasmon Resonance band and they are active metals in several photocatalytic reactions. The immobilized catalysts were synthesized following different methods to optimize the synthetic steps and to achieve better performances. For the same purpose the alloying effect between gold and silver nanoparticles was examined.
Resumo:
Biomass transformation into high-value chemicals has attracted attention according to the “green chemistry” principles. Low price and high availability make biomass one of the most interesting renewable resources as it provides the means to create sustainable alternatives to the oil-derived building blocks of the chemical industry In recent year, the need for alternative environmentally friendly routes to drive chemical reactions has in photocatalytic processes an interesting way to obtain valuable chemicals from various sources using the solar light as energy source. The purpose of this work was to use supported noble metal nanoparticles in the selective photo-oxidation of glucose through using visible light. Glucose was chosen as model molecule because it is the cheapest and the most common monosaccharide. Few studies about glucose photo oxidation have been conducted so far, and reaction mechanism is still not totally explained. The aim of this work was to systematically analyze and assess the impact of several parameters (eg. catalyst/substrate ratio, reaction time, effect of the solvent and light source) on the reaction pathway and to monitor the product distribution in order to draw a general reaction scheme for the photo oxidation of glucose under visible light. This study regards the reaction mechanism and the influence of several parameters, such as solvent, light power and substrate concentration. Furthermore, the work focuses on the influence of gold and silver nanoparticles and on the influence of metal loading. The glucose oxidation was monitored through the mass balance and the products selectivity. Reactions were evaluated in terms of glucose conversion, mass balance and selectivities towards arabinose and gluconic acid. In conclusion, this study is able to demonstrate that the photo oxidation of glucose under visible light is feasible; the full identification of the main products allows, for the first time, a comprehensive reaction mechanism scheme.
Resumo:
A variety of iron compounds containing vinyl or thiol functional groups (used as photoactivators) have been synthesised and some of these were successfully bound to both polyethylene and polypropylene backbones during processing in the presence of peroxide and interlinking agent. Concentrates (masterbatches) of the photoactivators in PP and PE were prepared and the pro-oxidant effect of the diluted masterbatches in absence and presence of an antioxidant was evaluated. An antioxidant photoactivator (FeDNC ) was found to sensitise the photoactivity of pro-oxidants (Metone A / Metone M) whereas an antioxidant (ZnDNC) was found to stabilise the polymer (PP and PE) containing both of these combinations. It was observed that the lower concentration of FeDNC sensitises the stability of the polymer containing very small concentration of NiDNC whereas higher concentration of FeDNC stabilises the polymer (LDPE) containing same amount of NiDNC compared to FeDNC alone. The photostability of unstabilised PP containing FeAc could be varied by varying the concentration of ZnDEC. Both the induction period and the UV - life time of the polymer increased by increasing concentration of ZnDEC. It is suggested that ligand exchange reaction may take place between FeAc and ZnDNC. A polymer bound UV stabiliser (HAEB) and a thermal stabiliser (DBBA) were used with a non extractable photoactivator (FeAc) in PP. Small concentrations of the stabilisers (HAEB and DBBA) in combination with the photoactivator (FeAc) sensitise the polymer. The antioxidant present in commercial polymer (LDPE and PP) was found to be of a hindered phenol type, which was found to antagonise with ZnDNC when used in combination with the photoactivators.
Resumo:
Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.
Resumo:
Heterogeneous copper catalyst was developed using the mesoporous molecular sieve MCM-41 as the catalyst support. Copper was impregnated onto the support. Catalysts with different copper loadings were obtained. The performance of the developed catalysts was evaluated in photochemically enhanced oxidation of phenol using hydrogen peroxide as the oxidant. The catalyst was found to significantly increase the oxidation rate and enhance the removal level of phenol with UV light present. The effects of copper loading on the catalyst, photo (UV), H2O2 concentration, and catalyst dosage on the photo-oxidation of phenol were studied. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The quantum yields of singlet oxygen production and lifetimes at the gas–solid interface in silica gel material are determined. Different photosensitizers (PS) are encapsulated in parallelepipedic xerogel monoliths (PS-SG). PS were chosen according to their known photooxidation properties: 9,10-dicyanoanthracene (DCA), 9,10-anthraquinone (ANT), and a benzophenone derivative, 4-benzoyl benzoic acid (4BB). These experiments are mainly based on time-resolved 1O2 phosphorescence detection, and the obtained FD and tD values are compared with those of a reference sensitizer for production, 1H-phenalen-1- one (PN), included in the same xerogel. The trend between their ability to oxidize organic pollutants in the gas phase and their efficiency for production is investigated through photooxidation experiments of a test pollutant dimethylsulfide (DMS). The FD value is high for DCA-SG relative to the PN reference, whereas it is slightly lower for 4BB-SG and for ANT-SG. FD is related to the production of sulfoxide and sulfone as the main oxidation products for DMS photosensitized oxidation. Additional mechanisms, leading to C!S bond cleaveage, appear to mainly occur for the less efficient singlet oxygen sensitizers 4BB-SG and ANTSG.
Resumo:
The effect of ultraviolet radiation on the properties of poly(3-hydroxybutyrate) (PHB) was studied. The PHB investigated is produced from microbial fermentation using saccharose from sugarcane as the carbon source to the bacteria. The material was exposed to artificial UV-A radiation for 3, 6, 9 and 12 weeks. The photodegradation effect was followed by changes of molecular weight, of chemical and crystalline structures, of thermal, morphological, optical and mechanical properties, as well as of biodegradability. The experimental results showed that PHB undergoes both chain scission and cross-linking reactions, but the continuous decrease in its mechanical properties and the low amount of gel content upon UV exposure indicated that the scission reactions were predominant. Molar mass, melting temperature and crystallinity measurements for two layers of PHB samples with different depth suggested that the material has a strong degradation profile, which was attributed to its dark colour that restricted the transmission of light. Previous photodegradation initially delayed PHB biodegradability, due to the superficial increase in crystallinity seen with UV exposure. The possible reactions taking place during PHB photodegradation were presented and discussed in terms of the infrared and nuclear magnetic resonance spectra. A reference peak (internal standard) in the infrared spectra was proposed for PHB photodegradation. (C) 2010 Elsevier Ltd. All rights reserved.